0

Вихревые насосы устройство и принцип действия

Вихревые насосы. Принцип работы вихревых насосов. Достоинства и недостатки.

Теория

Вихревые насосы являются разновидностью лопастных насосов. Рабочее колесо вихревых насосов представляет собой массивный стальной диск с фрезерованными по окружности пазами, образующими прямолинейные короткие лопатки. Всасывающий и напорные патрубки насоса обычно расположены в верхней части корпуса, что обеспечивает последующее самовсасывание насоса после одноразового залива при первоначальном пуске насоса. Внутри корпуса концентрично к оси вала насоса расположен отливной канал, идущий по направлению вращения от входного до напорного патрубка. Между всасывающим и напорным патрубками расположена перемычка, подходящая к рабочему колесу с минимальным зазором (0,15-0,2 мм) и перекрывающая не менее 2-х лопаток рабочего колеса. Перемычка отделяет всасывающую полость от напорной.

Рис.4. Схема устройства и работы вихревого насоса: 1-рабочее колесо; 2-лопатка; 3-корпус; 4-всасывающий патрубок; 5-напорный патрубок

Принцип действия вихревых насосов подобно центробежным основан на использовании центробежной силы, возникающей при вращении рабочего колеса. Однако в их работе имеются и некоторые особенности. При вращении рабочего колеса насоса некоторый объем жидкости из всасывающего трубопровода поступает в пазы рабочего колеса и движется от периферии к центру, то есть иначе, чем в центробежных насосах. Затем этот объем жидкости под воздействием центробежной силы начинает двигаться вдоль лопатки, от центра к периферии насоса, и, получив скоростную энергию, отбрасывается в отливной канал. В канале скоростная энергия объема жидкости переходит в энергию давления. Под действием давления и подсасывающего действия лопаток колеса этот объем жидкости снова попадает на лопатки, и цикл повторяется. Таким образом, за полный оборот рабочего колеса указанный цикл повторяется многократно, причем каждый раз происходит приращение энергии и, следовательно, напора. Благодаря этому вихревой насос развивает напор, в 2-4 раза больший, чем центробежный насос с таким же диаметром рабочего колеса.

Недостатки этих насосов: сравнительно невысокий кпд (20-50 %) и быстрый износ зазора при подъеме воды, содержащей песок. Поскольку минимальный зазор между рабочим колесом и корпусом, как уже говорилось, не должен превышать 0,15-0,2 мм, вихревые насосы предназначены для перекачки жидкостей, не содержащих абразивных примесей.

Вихревые насосы выпускаются производительностью от 8 до 60 м3/ч с напором от 25 до 250 метров. Выпускаются также комбинированные насосы, в которых в одном корпусе размещаются колеса центробежного и вихревого типов. Эти насосы отличаются лучшим кпд.

Вихревые токи

Дата публикации: 27 февраля 2015.

Рассматривая принцип действия генератора постоянного тока, можно заметить, что при его вращении в проводниках обмотки якоря, пересекающих магнитное поле, индуктируется электродвижущая сила (ЭДС). Так как и сам стальной якорь пересекает те же магнитные индукционные линии, то в нем, также как и в проводнике, должны индуктироваться токи.

Токи, которые индуктируются в металлических телах при пересечении их магнитными линиями, называются вихревыми токами, или токами Фуко.

Рисунок 1. Возникновение вихревых токов в сплошном стальном якоре электрической машины
Рисунок 2. Изменение пути вихревых токов при разделении стального якоря электрической машины на изолированные участки. Стрелками показаны направления индукционных токов
Рисунок 3. Схема устройства индукционной печи

На рисунке 1 схематически изображен якорь, вращающийся в магнитном поле. Вихревые токи Фуко в якоре, условно показанные пунктирными стрелками, проходя по телу якоря, будут нагревать его, на что затрачивается энергия. Если не принять мер к уменьшению вихревых токов, они, сильно нагревая якорь, могут привести к порче изоляции его обмоток. Уничтожить совсем потери на вихревые токи нельзя, но уменьшить их можно и нужно.

Для уменьшения потерь на вихревые токи в трансформаторе, якоре генератора, электрическом двигателе, магнитопроводы собирают из отдельных тонких (0,35 – 0,5 мм) штампованных листов мягкой стали, расположенных по направлению линий магнитного потока и изолированных один от другого лаком или тонкой бумагой. Это делается для того, чтобы вследствие малого поперечного сечения каждого стального листа уменьшить величину проходящего через него магнитного потока, а стало быть уменьшить индуктируемые в нем ЭДС и ток.

Путь вихревых токов в теле якоря при разделении последнего на отдельные изолированные участки схематически показан на рисунке 2.

Чтобы еще больше ослабить вихревые токи, увеличивают удельное сопротивление стали путем добавления в нее около 4 % кремния. Такая сталь называется легированной.

Однако не всегда вихревые токи являются вредными; в некоторых случаях они находят и полезное применение. Так, например, эти токи используют для закалки стальных изделий токами высокой частоты, в работе индукционных электроизмерительных приборов, счетчиков и реле переменного тока (описанных ниже).

В индукционных печах (рисунок 3) вихревые токи, наводимые первичной обмоткой I во вторичной обмотке II, которой является масса металла, настолько сильны и количество тепла, выделяемое ими, так велико, что металл плавится.

Применение вихревых токов находит свое применение в измерительных приборах. Часто в них устанавливают магнитоиндукционные тормозы (рисунок 4). При колебаниях стрелки (рисунок 4, а) или при вращении диска (рисунок 4, б) они пересекают поле магнита М и в них индуктируются вихревые токи, которые по правилу Ленца имеют такое направление, что противодействуют вызвавшей их причине. Таким образом, эти токи будут тормозить вращение диска и уменьшать колебания стрелки, быстро ее успокаивая.

Рисунок 4. Магнитоиндукционные тормозы

Источник: Кузнецов М.И., «Основы электротехники» — 9-е издание, исправленное — Москва: Высшая школа, 1964 — 560с.

Вихревая горелка

Использование: в энергетике, в частности для раздельной подачи топлива и окислителя в реакторы. Сущность изобретения: внутренняя труба для подачи окислителя снабжена дополнительным сопловым наконечником, соосным с сопловым наконечником наружной трубы, лопастной завихритель установлен на обтекаемом теле, расположенном во внутренней трубе, при этом сопловой наконечник и дополнительный сопловой наконечник выполнен с U-образным продольным сечением. 3 з. п. ф-лы, 1 ил.

Изобретение относится к аппаратам для осуществления сгорания топлива, в частности к вихревой горелке с каналами для раздельной подачи топлива и окислителя, которую можно применять в реакторах для осуществления процессов сгорания газообразного топлива.

Известна вихревая горелка, содержащая концентрично установленные с образованием кольцевого канала, подключенного к источнику газообразного топлива, наружную трубу с сопловым наконечником и подключенную к источнику окислителя внутреннюю трубу, снабженную размещенным в ней завихрителем. Основной недостаток известной вихревой горелки заключается в том, что при высоких скоростях газового потока, требующихся в промышленных горелках данного типа, лицевая поверхность горелки подвергается перегреву, вызываемому высокой степенью внутренней рециркуляции вдоль центральной оси зоны сгорания. При этом создается обратное течение горячих продуктов горения в сторону лицевой поверхности горелки, что приводит к быстрому нагреву до высоких температур, которые отрицательно сказываются на сроке службы горелки. Техническим результатом изобретения является увеличение срока службы вихревой горелки. Это достигается тем, что горелка имеет размещенный соосно с сопловым наконечником дополнительный сопловой наконечник, которым снабжена внутренняя труба, а лопастной завихритель установлен на цилиндрическом обтекаемом теле, выполненном с выпуклым концом, размещенным вверх по потоку окислителя, и с коническим концом, размещенным вниз по потоку окислителя, при этом сопловой наконечник и дополнительный сопловой наконечник выполнены с U-образным продольным сечением, а выходное отверстие дополнительного соплового наконечника размещено на расстоянии от выходного отверстия соплового наконечника. Завихритель предпочтительно установлен на плохо обтекаемом теле между его концами, причем он снабжен стационарными лопастями, направленными в сторону поверхности камеры, образуемой сопловым наконечником на выпускном конце внутренней трубы. Каждая камера имеет U-образную конфигурацию и снабжена кольцевым выпускным концом вокруг оси горелки. В процессе эксплуатации горелки подаваемый в камеру на выпускном конце внутренней трубы окислитель впрыскивается в размещенную вниз по потоку зону сгорания в виде вихревого потока, создаваемого в результате совместного воздействия на поток окислителя плохо обтекаемого тела и завихрителя. При этом после пропускания через камеру поток окислителя перемещается вокруг общей оси обеих камер и зоны сгорания. В зоне сгорания окислитель смешивается с впрыскиваемым в нее газообразным топливом. При этом после пропускания через камеру на выпускном конце наружной трубы газообразное топливо перемещается вовнутрь в направление оси зоны сгорания. Вызываемый завихрителем поток способствует смешению газообразного топлива и окислителя за счет увеличения поверхности контакта. Высокоэффективное смешение достигается в том случае, если лопасти завихрителя устанавливают под углом наклона 15-75o, предпочтительно 20-45o. Направленный вовнутрь поток газообразного топлива вдоль оси зоны сгорания, создаваемый U-образной конфигурацией соответствующей камеры, предотвращает рециркуляцию горячих продуктов горения в высокотемпературную зону по оси зоны сгорания, благодаря чему избегается перегрев лицевой поверхности горелки. Кроме того, направляемый вовнутрь поток газообразного топлива приводит к высокой степени наружной рециркуляции в наружной низкотемпературной зоне зоны сгорания. Из этой зоны только охлажденные продукты горения циркулируют обратно к лицевой поверхности горелки, где они всасываются в горячую зону сгорания, в которой они повторно нагреваются. В процессе эксплуатации предлагаемой горелки в работающих на газах реакторах поток рециркулируемых холодных продуктов сгорания защищает окружающую зону сгорания стенку реактора от контакта с горячими продуктами сгорания, благодаря чему увеличивается срок службы реактора. Температуру в зоне лицевой поверхности горелки, смежной с выпускным концом камер, можно далее снижать за счет того, что установленный на выпускном конце камеры для окислителя сопловой наконечник выполняют с острой кромкой, имеющей минимальный угол наклона. Уменьшенный нагрев и удовлетворительная механическая прочность соплового наконечника достигаются при углах наклона 15-60o, предпочтительно 15-40o. Дополнительное преимущество предлагаемой вихревой горелки заключается в том, что высокая степень наружной рециркуляции охлажденных продуктов горения обеспечивает гомогенное распределение температур у выпуска зоны сгорания. Это имеет большое значение при эксплуатации каталитических реакторов, в которых выход целевого продукта в значительной степени зависит от распределения температур по слою катализатора, который в большинстве случаев размещен у выпуска зоны сгорания. Таким образом, предлагаемая вихревая горелка, в частности, годится для применения в работающих на газообразном топливе реакторах, в которых осуществляются каталитические процессы. На чертеже схематически представлена предлагаемая вихревая горелка, вариант выполнения, продольное сечение. Наружная труба 1 соосно центральной оси 2 окружает внутреннюю трубу 3 для подачи окислителя с образованием между трубами 1, 3 канала 4 для подачи газообразного топлива. На выпускном конце 5 наружной трубы 1 размещен сопловой наконечник 6, выполненный с U-образной профилированной внутренней поверхностью вокруг оси 2. В полости соплового наконечника 6 размещен дополнительный сопловой наконечник 7 с U-образной профилированной поверхностью, установленный на выпускном конце 8 внутренней трубы 3. U-образную конфигурацию сопловых наконечников можно получать, например, за счет обработки подходящего металлического тела, имеющего цилиндрическую и коническую части. При этом угол перехода между цилиндрической и конической частями предпочтительно составляет 115 170o. Поверхности сопловых наконечников 6, 7 заключают камеру 9 для газообразного топлива, сообщающуюся с каналом 4, и размещенную в полости соплового наконечника 7 камеру 10, сообщающуюся с выпускным концом внутренней трубы 3. Камеры 9, 10 выполнены с U-образной конфигурацией вокруг оси 2, имеющей кольцевые выпускные концы 11, 12, соосные с центральной осью 2. Выпускной конец 11 камеры 10 входит в нижнюю часть камеры 9. Кромка соплового наконечника 7, окружающая выпускной конец 11 камеры 10 для подачи окислителя, выполнена заостренной и имеет минимальный угол наклона с тем, чтобы обеспечить защиту кромки от перегрева, что будет еще подробнее объяснено ниже. Камера 10 снабжена цилиндрическим плохо обтекаемым телом 13, размещенным соосно на расстоянии от ее внутренней поверхности. Плохо обтекаемое тело 13 выполнено вверх по потоку с выпуклым концом 14, а вниз по потоку с коническим концом 15. На цилиндрической поверхности плохо обтекаемого тела 13 установлен завихритель 16, снабженный непоказанными на чертеже стационарными лопастями, направленными в сторону поверхности камеры 10. В процессе эксплуатации предлагаемой горелки газообразное топливо подается по каналу 4 в камеру 9, откуда оно впрыскивается в зону сгорания 17, размещенную под выпускным концом 11 камеры 10. Благодаря U-образной конфигурации камеры 9 поток впрыскиваемого в зону сгорания 17 топлива направляется в сторону совместной оси 2 камеры 9 и зоны сгорания 17. В зоне сгорания 17 поток газообразного топлива смешивается с окислителем, подаваемым по внутренней трубе 3 и впрыскиваемым в зону сгорания 17 через камеру 10. При этом перед впрыскиванием в зону сгорания 17 потоку окислителя сообщается вихревое течение во время прохода через завихритель 16. Кроме того, наличие плохо обтекаемого тела 13 и U-образной конфигурации камеры 10 обеспечивает то, что вихревой поток окислителя впускается в зону сгорания 17 в качестве общего потока, направленного по оси зоны сгорания 17, которая совпадает с центральной осью 2. Таким образом, процесс смешения окислителя и газообразного топлива в основном осуществляется в высокотемпературной зоне по оси зоны сгорания 17. При этом вредная внутренняя рециркуляция горячих продуктов горения в пределах этой зоны предотвращается. Рециркуляция имеет место только в низкотемпературной наружной зоне сгорания, благодаря чему часть горелки, смежная с выпускными концами инжекторных камер, подвергается только воздействию более низких температур. Как уже указывалось выше, температуру в этой зоне можно далее регулировать при помощи угла g кромки инжектора для окислителя, окружающей выпускной конец соответствующей инжекторной камеры. При этом зону смешения окислителя и газообразного топлива можно держать на расстоянии от кромки, которое увеличивается по мере уменьшения угла наклона. Изменения и альтернативные выполнения вышеописанной формы выполнения предлагаемой вихревой горелки, которые очевидны для специалиста в данной области, рассматриваются как входящие в объем данного изобретения. Так, например, если процесс должен протекать при очень высокой интенсивности сгорания, то лицевая поверхность горелки может далее защищаться от воздействия высоких температур за счет подачи инертного газа или пара в зону выпускных концов камер 9, 10, которая может осуществляться на кромке соплового наконечника 7 через выполненный в нем канал.

Формула изобретения

1. Вихревая горелка, содержащая концентрично установленные с образованием кольцевого канала, подключенного к источнику газообразного топлива, наружную трубу с сопловым наконечником и подключенную к источнику окислителя внутреннюю трубу, с размещенным в ней лопаточным завихрителем, отличающаяся тем, что она имеет размещенный соосно с сопловым наконечником дополнительный сопловой наконечник, которым снабжена внутренняя труба, а лопаточный завихритель установлен на цилиндрическом обтекаемом теле, выполненном с выпуклым концом, размещенным вверх по потоку окислителя, и с коническим концом, размещенным вниз по потоку окислителя, при этом сопловой наконечник и дополнительный сопловой наконечник выполнены с U-образным продольным сечением, а выходное отверстие дополнительного соплового наконечника размещено на расстоянии от выходного отверстия соплового наконечника. 2. Горелка по п.1, отличающаяся тем, что свободный конец лопастей завихрителя закреплен на внутренней стенке внутренней трубы. 3. Горелка по п.2, отличающаяся тем, что лопасти завихрителя установлены под углом 15 75o к центральной оси горелки. 4. Горелка по п.1, отличающаяся тем, что сопловой наконечник и дополнительный сопловой наконечник на выходных участках выполнены под углом 15 60o, заключаемым двумя приложенными к их внутренней и наружной поверхностям касательными, пересекающимися у свободного конца их шеек.

РИСУНКИ

Рисунок 1
Похожие патенты: Устройство для сжигания газообразного топлива // 2076271 Изобретение относится к энергетике и может быть использовано для сжигания газообразного топлива, также в химической, нефтехимической и других отраслях промышленности Газовая горелка для вращающихся печей // 1815501 Горелка // 1802272 Горелка // 1802271 Горелка // 1702097 Изобретение относится к теплотехнике и может быть использовано в топливосжигающих устройствах различного назначения Способ сжигания топлива // 1611021 Изобретение относится к области энергетики, предназначено для формирования высокотемпературного потока теплоносителя в горелках различного назначения, например для металлизационного напыления, и позволяет повысить экономичность сжигания топлива путем улучшения качества смесеобразования Турбинная горелка // 1467321 Изобретение относится к теплотехнике и может быть использовано в топках котлов и теплогенераторов Турбинная горелка // 1462065 Газотурбинная горелка // 1460539 Горелочное устройство // 2101618 Изобретение относится к устройствам для сжигания газа и может быть использовано в машиностроении и электротехнике для сварки, пайки, нагрева, резки и огневой очистки металла Газовая горелка // 2107224 Изобретение относится к газовым горелкам и может быть применено в металлургической и других отраслях промышленности Способ подготовки природного газа // 2150044 Изобретение относится к теплоэнергетике, в частности к использованию природного газа в качестве источника тепловой энергии Способ сжигания топлива и устройство для его осуществления // 2160414 Изобретение относится к теплоэнергетике, огневым технологиям и может найти широкое применение в теплоэнергетических установках (котельные, домны и т.д.), а также в реактивных и газотурбинных двигателях, использующих также топливные горелки для преобразования тепловой энергии горения топлива в реактивную кинетическую энергию струи пламени и отходящих газов Газовая горелка // 2171428 Изобретение относится к теплоэнергетике и может быть использовано в ручных и стационарных горелочных устройствах для розжига и поддержания горения в топках котлов и газотурбинных установках, а также для нагрева, обжига и термообработки деталей Вихревая горелка // 2171429 Изобретение относится к энергетике и может быть использовано для растопки и стабилизации горения пылеугольного факела на энергетических и водогрейных котлах с вихревыми горелками Способ сжигания нефтяных газов и устройство для его осуществления // 2176050 Изобретение относится к нефтегазовой, добывающей и перерабатывающей промышленности и может быть использовано при сжигании нефтяных газов Изобретение относится к теплоэнергетике, в частности к использованию природного газа в качестве источника тепловой энергии Изобретение относится к энергетике и может быть использовано для растопки и стабилизации горения пылеугольного факела на энергетических и водогрейных котлах с вихревыми горелками Вихревое устройство сопловых аппаратов, например газовой горелки // 2180078 Изобретение относится к горелочным устройствам теплотехнических агрегатов, может быть использовано в металлургической промышленности и промышленной теплотехнике и обеспечивает повышение надежности и снижение стоимости изготовления вихревых устройств сопловых аппаратов

Изобретение относится к аппаратам для осуществления сгорания топлива, в частности к вихревой горелке с каналами для раздельной подачи топлива и окислителя, которую можно применять в реакторах для осуществления процессов сгорания газообразного топлива

Резервуары, емкости, резервуарное оборудование Neft-rus.ru

Винтовые высоконапорные насосы — насосы для ППД, магистральные насосы

Высоконапорные насосы также применяются в системах как насосы ППД или как магистральные насосы в системе высоконапорной транспортировки и зарекомендовали себя как высоконадёжное оборудование, которое по сравнению с другими типами насосов не требует частого периодического обслуживания.

По маркетинговым исследованиям, проведённым нашей компанией — при приобретении насосного агрегата, окупаемость насоса от ценовой разницы, например, наступает через 6-12 мес., после этого срока, насос начинает приносить прибыль от экономии электроэнергии, не говоря уже об экономии в запасных частях и техническом обслуживании!

  • Производительность — до 600 м3/сутки на одном агрегате
  • Давление — до 240 атм.

Примечание: Изготовление более мощных по давлению и производительности винтовых насосов возможно, но экономически нецелесообразно. Более подробную информацию можно получить при обращении в офис нашей компании.

Отличительные особенности:

  • -Нет срыва подачи — насосы могут работать как при малой производительности, так и при высокой сохраняя дифференциальное давление, т.е. сопротивление пласта или давления в высоконапорном трубопроводе;
  • -Низкие обороты рабочих органов — до 400 об/мин — малый естественный износ проточной части винтовой пары;
  • -Перекачивание пластовой воды с содержанием хлоридов (500 тыс. мг/л), сероводорода, ила или скелета породы (при перекачивании речной воды) без повреждения рабочих органов;
  • -Идеальная геометрия статора-ротора, изготавливаемая компанией NETZSCH, которая позволяет увеличить рабочий ресурс статора;
  • -Насосы обладают вакуумметрической способностью в 0,8 атм.;
  • -Возможность реверсной работы (прямое и обратное вращение);
  • -Низкое энергопотребление;
  • -Перекачивание мех. примесей без повреждения рабочих органов — обвязка насоса без фильтра тонкой очистки перед насосом, тем самым соблюдается равенство давления до фильтра и после;
  • -Высокий КПД;
  • -Перекачивание высоковязкой нефти без использования установок предварительного подогрева
  • -Регулируемый привод (механический или частотный);
  • -Отсутствие вибрации и гидроударов;
  • -Широкий диапазон производительности на каждой отдельно-взятой винтовой насосной установке
  • -Высокий срок службы (МРП) торцевых уплотнений и основных рабочих органов;
  • -Низкая стоимость запасных частей, и за счёт простоты конструкции насоса — их небольшое количество;
  • -Высокая ремонтопригодность, не требуется выезд сервисных служб производителя;
  • -Относительно низкая стоимость закупки.

Особенности конструкции:

Дифференциальное давление в одновинтовых насосах достигается мощностью двигателя и количеством витков ротора. При уменьшении или увеличении скорости вращения ротора — уменьшается или увеличивается только производительность, давление не меняется.

Давление на входе:

  • -для корпуса входа из чугуна – до 7 атм.
  • -для корпуса входа из стали – до 150 атм.

Уплотнение вала насоса:

  • -Сальниковое (арамид);
  • -Торцевые уплотнения:
  • -Одинарного действия;
  • -Двойное (спина к спине);
  • -Двойное картриджного типа.

Материалы ротора, вращающихся частей и эластомера статора

Каждая комплектующая на магистральные насосы подбирается на основании заполненного опросного листа в зависимости от состава перекачиваемой среды, климатического исполнения насосного агрегата, входного давления и т.д.

В зависимости от пожеланий клиента, насосы ПДД могут быть укомплектованы и поставляться с:

  • -байпасной линией с любыми типами запорной арматуры и защитных клапанов;
  • -быстросъёмными резьбовыми соединениями;
  • -ответными фланцами;
  • -рубашками обогрева или охлаждения;
  • -станцией управления с частотным преобразователем;
  • -электрообогревающим тепловым кожухом;
  • -защитой от сухого хода STP2 с индикационной панелью для встраивания в станцию управления;
  • -датчиками давлениями, уровня и т.д.

admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *