0

Что такое водонагреватель косвенного нагрева

Содержание

Бойлер косвенного нагрева: устройство, принцип работы, схемы подключения

Бойлер косвенного нагрева (БКН) – отличное решение для дач, частных домов, отелей, спортивных комплексов и других помещений, не подключенных к централизованному водоснабжению. Это оборудование без труда справляется с нагревом больших объемов, легко поддерживает нужную температуру и обеспечивает бесперебойную подачу горячего потока.

Словом, если вы подыскиваете бюджетный водонагреватель в комплект к одноконтурному котлу – рассмотрите вариант установки в доме БКН. А чтобы выбор был проще, мы рассмотрим детально принцип работы этого прибора, схемы его подключения и подскажем, на что обратить внимание при покупке.

Конструктивные особенности и принцип работы БКН

Бойлер косвенного нагрева может работать только на ресурсах внешнего источника, но для обслуживания системы в теплое время года можно подключить ТЭН.

Чтобы обеспечить бесперебойную подачу, в системе предусматривают рециркуляционный контур – вода будет постоянно двигаться по трубам, а при открытии крана в подключенных к контуру точках водоразбора потечет горячий поток.

Бойлер косвенного нагрева обычно устанавливается рядом с отопительным котлом, и этот «дуэт» занимает довольно большую площадь, особенно если оба прибора напольного типа

Таким образом, прибор позволяет значительно сэкономить на энергоресурсах, но при этом получать не меньший комфорт, чем при использовании централизованной системы горячего водоснабжения.

Как устроен бойлер косвенного нагрева

Прибор, греющий воду по косвенному принципу. – это утепленная накопительная емкость, внутри которой установлен нагревательный элемент, работающий от внешнего теплоносителя. Сам бак может быть выполнен в форме прямоугольника или цилиндра, а в его стенках предусмотрены патрубки — для циркуляции горячей воды от системы отопления и входа/вывода труб водоснабжения.

Основой конструкции служит металлическая или пластиковая емкость с вместительностью от десяти до нескольких тысяч литров. Изнутри бак может быть обработан покрытием из эмали, керамики или стеклофарфора, что помогает сохранить надлежащее качество воды и избежать коррозии. От теплопотери корпус защищает изоляционный слой из полиуретана, поролона или минеральной ваты.

Спираль с теплоносителем может равномерно располагаться по всей емкости, либо плотно укладываться внизу, чтобы быстрее нагревать поступающую туда холодную воду

Для предупреждения накипи в верхней части емкости устанавливают магниевый или титановый анод, который смягчает воду, защищает металл от гальванической коррозии и увеличивает срок «жизни» прибора. Также прибор снабжают терморегулятором, контролирующим нагрев до определенной температуры, и предохранительными клапанами, входящими в группу защиты.

Типы и модельные разновидности оборудования

Самый распространенный тип прибора представляет собой накопительный бак, внутрь которого помещены стальные или латунные трубы (змеевик) с циркулирующим теплоносителем. От количества витков на его спирали зависит скорость нагрева воды. Принцип работы такой конструкции бойлера косвенного нагрева предельно прост: в бак поступает холодная вода, и теплоноситель, передвигаясь по змеевику, прогревает ее до нужной температуры.

Но есть и приборы, сконструированные по схеме «бак в баке», где вместо спирального трубопровода применяются две емкости различного диаметра.

Система работают так: в меньший резервуар поступает холодная вода, которая нагревается от горячего теплоносителя, циркулирующего между стенками резервуаров. В таких приборах вода становится теплой за считанные минуты – большая площадь нагрева позволяет оборудованию эффективно работать в проточном режиме, гарантируя бесперебойную подачу горячего потока.

Бойлеры, работающие по системе «бак в баке», не только быстро нагревают воду до 90⁰С, а и обладают функцией самоочистки

Комбинированный БКН для нагрева воды может использовать энергию сразу от нескольких источников или оснащаться встроенным ТЭНом.

Разновидности бойлера КН

По месту размещения:

  • Настенный – обычно, это прибор небольшого размера с литражом до 200л. Крепится с помощью специальных кронштейнов на любую вертикальную поверхность, достаточно крепкую, чтобы выдержать вес полностью заполненного резервуара (гипсокартонные перегородки однозначно не подойдут). Он может быть расположен достаточно высоко и не занимать полезную площадь комнаты.
  • Напольный – вместительный бойлер, рассчитанный на большое количество потребителей. Правда, для прибора с емкостью, превышающей 1000 л, рекомендуется выделить отдельное помещение – котельную. Но такую систему обычно устанавливают для обслуживания больших коттеджей, предприятий, отелей и прочих учреждений, для семейного пользования можно обойтись и прибором на 250-300 л.

По форме бака:

  • Горизонтальный – занимает много места, зато в нем легче самостоятельно поддерживать нужный уровень воды, не прибегая к подключению насосов.
  • Вертикальный – экономит свободное пространство, но весьма ограничен по вместительности.

В зависимости от нюансов использования, особенностей планировки и наличия свободного места, можно подобрать оптимальную модель БКН, который органично впишется в дизайн помещения и обеспечит ваш дом бесперебойной подачей горячей воды.

Плюсы и минусы устройства

Главное преимущество бойлера косвенного нагрева – экономия на энергоносителях. Для его работы не нужно подключать газовую горелку или задействовать электричество, как требует прибор прямого нагрева. Отопительная система дает все необходимые ресурсы, поэтому горячая вода – практически бесплатный «бонус», который поможет существенно сэкономить семейный бюджет в холодное время года.

Большинство бойлеров косвенного нагрева дополнительно оснащаются ТЭНами с терморегулятором, чтобы можно было использовать прибор и в теплый период, когда отопление отключается

Другие преимущества БКН:

  • Высокая производительность – бак с объемом в 100л способен «выдать» за час около 400 литров горячей воды (при условии достаточно мощного котла).
  • Длительный срок службы (теплоноситель не контактирует с проточной водой, как в аналогичных приборах прямого нагрева).
  • Не перегружает электросеть — работает от внешнего источника энергии.
  • Мгновенная подача горячей воды – не нужно ждать, пока протечет холодный поток, как при использовании газовых колонок, или нагреется израсходованный бак, как у электробойлера.
  • Есть возможность подсоединения к нескольким источникам энергии, например, солнечному коллектору, котлу, тепловому насосу геотермальной системы.
  • Доступная стоимость – при желании систему можно собрать и своими руками.

Конечно, без минусов здесь тоже не обошлось. При всех достоинствах, скорость нагрева воды в приборе оставляет желать лучшего – для обработки 100 литров даже современное оборудование потратит не менее 15-20 минут, а самодельные системы могут не справиться и за час.

Также бойлеры косвенного нагрева достаточно громоздки, поэтому занимают внушительное количество свободного пространства (для больших резервуаров может понадобиться отдельное помещение).

Бойлер косвенного нагрева можно сделать и из подручных материалов, используя гнутую медную трубу для змеевика, вместительную бочку с крышкой или газовый баллон для бака

Кроме того, действительно экономичным это устройство будет только в отопительный период, а в теплое время года придется либо включать котел, либо предусматривать альтернативные источники тепла (солнечные батареи, ТЭН). Да и цена качественного «косвенника» превышает аналоги с прямым нагревом.

На что обратить внимание при выборе БКН

Один из основных параметров, который должен стать решающим аргументом при покупке бойлера – его вместительность. Чтобы узнать необходимую емкость бака, советуем ориентироваться на количество человек в вашей семье.

Рекомендации по литражу:

  • 2 потребителя – 80-100 литров.
  • 3 человека – 100-120 литров.
  • 4 – 120-150 литров.
  • 5 – 150-200 литров.

Важно разделять понятия «общая емкость бака» и «рабочая емкость», ведь спиральная труба, расположенная внутри бойлера, занимает значительную площадь. Поэтому обязательно уточните при покупке, сколько реально воды помещается в прибор (в технических характеристиках этот нюанс должен быть указан).

Также помимо «поголовного» пересчета потенциальных потребителей, необходимо учитывать и частоту, и объемы использования воды. Например, если в вашей семье любят понежиться в теплой ванне, а не наскоро принять душ, рабочая емкость бака должна быть соответственной — не менее 120 литров.

БКН выгодно использовать в комплекте с твердотопливным или одноконтурным газовым котлом, но если расход воды меньше 1 л/мин, дешевле обойдется двухконтурный котел, который и места займет гораздо меньше, чем система с косвенным нагревом

Другие важные параметры:

  1. Мощность – чем больше водопотребление, тем выше должен быть ресурс прибора. Но при этом важно, чтобы мощность «косвенника» не превышала возможности отопительной системы (или другого внешнего источника энергии). К примеру, если объем накопительного бака варьирует в пределах 120-150 литров, мощность котла должна быть не менее 23 кВт, а для 160-200 литров уже понадобится 31-39 кВт.
  2. Время нагрева – параметр, зависящий от объема бака и количества витков на змеевике (большие или комбинированные емкости могут быть снабжены несколькими спиралями).
  3. Материал бака – для долговременного использования лучше всего подойдут бойлеры из нержавейки или медицинской стали.
  4. Теплоизоляция – в дешевых моделях применяется поролон, который быстро изнашивается и пропускает тепло, поэтому лучше приобрести более дорогой прибор, где использовался полиуретан.
  5. Управление – устройство сможет работать в автоматическом режиме, по необходимости отключая и запуская ток воды, контролировать нагрев с помощью температурного датчика.

При выборе формы и размере бака также необходимо учесть, что хотя теоретически бойлер можно установить в любой комнате, где есть доступ к теплотрассе, его оптимальное месторасположение – рядом с котлом. Так передача тепла наиболее эффективна.

Нюансы и схемы подключения бойлера

Как уже упоминалось, для нагрева воды БКН использует энергию внешнего источника. Поэтому перед подключением к теплоносителю важно подобрать подходящую схему для монтажа прибора. Рассмотрим самые распространенные варианты.

Общие принципы установки прибора

Монтировать бойлер необходимо на подготовленную ровную поверхность в непосредственной близости от котла. Подвесные модели крепятся на бетонную или кирпичную стену, на одном уровне или немного выше отопительного котла. Для напольного прибора – следует выровнять по уровню участок, отведенный под размещение бака (если пол критично неровный, можно сделать подставку в виде подиума).

Сама обвязка БКН предназначена для подключения устройства к двум системам – водоснабжения и отопления. Для этого на корпусе имеются специальные патрубки.

В группу безопасности бойлера косвенного нагрева входит обратный и сбросной клапаны, которые защищают систему от повышенного давления и утечки горячей воды

Принципы присоединения:

  1. Холодная вода с системы водоотвода должна поступать в нижнюю часть бака, а горячая – выходить из верхней.
  2. На входе холодной воды следует установить обратный клапан, который предупредит утечку горячего потока из бойлера в случае снижения давления в системе.
  3. Посередине прибора может быть расположена точка для подвода рециркуляции.
  4. Когда включается нагревательный контур, движение теплоносителя должно осуществляться сверху вниз. То есть, труба с горячей водой заводится в верхний патрубок, а труба с остывшей – выходит снизу.
  5. Все патрубки нужно снабдить кранами с накидными гайками, чтобы обеспечить себе возможность отключения бойлера, например, на случай замены прибора или ремонтных работ.

Благодаря этой схеме достигается максимальный КПД прибора, поскольку циркулирующий в змеевике теплоноситель подогревает воду в верхней части бака, отдает остаток тепла низкотемпературным слоям и поступает для нового нагрева в котел.

Схемы подключения БКН к источнику

Чтобы правильно выбрать схему присоединения бойлера к системе отопления, необходимо учитывать возможности уже имеющейся разводки и место установки нагревательного прибора. Существует несколько решений.

Самая распространенная схема для постоянного пользования горячей водой – подключение через трехходовой клапан. Она предполагает наличие двух отопительных контуров – основного и отдельного для БКН. Для этого на подвод горячей воды врезается циркуляционный насос, а после него устанавливается трехходовой клапан, который управляется термостатом бойлера.

Работает схема так: когда температура воды в бойлере падает ниже заданной отметки, по сигналу термостата клапан переключает систему на нагрев накопительной емкости, а после достижения нужного показателя – отправляет поток циркулировать по общедомовому контуру.

Для корректной работы трехходовой схемы важно отрегулировать данные термостата, чтобы запрограммированная для бойлера температура не была установлена ниже, чем в терморегуляторе котла

Если же нет необходимости в постоянных и больших объемах горячей воды (например, бойлер установлен в загородном доме и используется только по выходным), можно рассмотреть вариант установки двухнасосной системы.

В этом случае БКН и отопительный котел подключаются параллельно, и потоки теплоносителя будут перемещаться по двум магистралям. Для принудительного движения воды устанавливается два насоса: на отопительном контуре и трубе подачи для бойлера. Нагрев осуществляется при помощи термостата, который временно отключает радиаторное отопление, направляя весь ресурс системы к бойлеру.

По двухнаносной схеме контур отопления будет отключаться на время работы бойлера, но за те 30-60 минут, что необходимы для нагрева бака «с нуля», радиаторы не успеют критично остыть

Для помещений, где используется многоконтурная система отопления (например, в дополнение к радиаторам установлен «теплый пол»), применяют гидравлический распределитель.

Гидрострелки перераспределяют давление на отдельных участках контура и обеспечивают бесперебойное движение теплоносителя даже без помощи циркуляционных насосов.

Без инженерного опыта такую сложную схему вряд ли получится сделать самому – чтобы предусмотреть массу нюансов и наладить бесперебойную работу системы, лучше обратиться к профессиональным проектировщикам

Без гидроколлектора в многоконтурной системе может выйти из строя насосное оборудование и даже случиться тепловой удар с повреждением радиаторов.

Система возвратной циркуляции

Если в бойлере предусмотрен третий вход, к нему можно подсоединить систему рециркуляции. Для этого в точку рециркуляции на корпусе прибора заводится закольцованный контур.

Поток воды находится в постоянном движении благодаря работе циркуляционного насоса, поэтому мгновенно доставляет теплую воду к точке потребления

Для реализации схемы понадобится смонтировать дополнительный контур и установить такие элементы:

  1. Обратный клапан на входе в нагреватель.
  2. Автоматический воздухоотводчик, защищающий насос от проникновения воздуха перед запуском.
  3. Предохранительный клапан, который убережет от перепадов давления.
  4. Мембранный расширительный бак, в который будет уходить излишек воды при повышении давления в системе. Учтите, что емкость резервной емкости должна быть не меньше 1/10 объема самого БКН.

Если же в устройстве бойлера косвенного нагрева не предусмотрен патрубок для рециркуляционного контура, можно сделать врезку возвратной линии в трубу холодной воды и установить насос. Тогда подключение осуществляется по нижеприведенной схеме.

Выбор схемы обвязки с возможностью рециркуляции или без нее должен основываться на конструкции БКН и системы отопления, а также мощности оборудования

Подключение по возвратной схеме обеспечивает бесперебойную подачу горячей воды – то есть, не нужно будет ждать, пока теплоноситель прогреет воду в баке.

Выводы и полезное видео по теме

Прежде чем решиться на покупку и установку в доме нового водонагревателя, предлагаем изучить видеоматериалы, наглядно демонстрирующие преимущества «косвенника» и нюансы его подключения.

На этом видео можно узнать, как работают бойлеры косвенного нагрева с теплоносителем, расположенным внутри змеевика:

Все нюансы внутреннего устройства и принципов работы различных типов бойлеров косвенного нагрева в подробном видео-ликбезе от практикующего мастера:

Обзор и подключение прибора на 300 литров, который работает от двух теплоносителей – котла и солнечных батарей:

Подробный разбор устройства БКН и схем его подключения. Практические советы и подсказки от мастера:

Что касается обслуживания, то бойлер косвенного нагрева – достаточно неприхотливое оборудование. При правильной установке и налаженной работе системы может понадобиться только замена магниевого анода раз в 6-12 месяцев и профилактическая промывка бака (частота зависит от качества водопроводной воды и интенсивности пользования).

Но если у вас установлен прибор, работающий по технологии «бак в баке», обладающий функцией самоочистки, менять расходник не потребуется. Впрочем, о регулярном обслуживании оборудования всегда можно договориться с мастерами, специализирующимися на установке и ремонте систем водоснабжения.


  1. Алексий

    Интересно было почитать. Так как живу в своем доме, использую электрический водонагреватель. Летом горячей водой пользуемся очень редко, в основном помыть руки и посуду. Моемся преимущественно в бане. А вот зимой потребление горячей воды ощутимо возрастает. Вот и подумывал поставить бойлер косвенного нагрева. Только места рядом с котлом очень мало. Вот если бы раза в два бойлер был меньше, тогда самое то.

  2. Александр

    Отличное приобретение, особенно, если вы живете в деревне и качаете воду из колодца. Дома всегда будет горячая вода, как в обычной городской квартире, да и по деньгам не особо дорого. Информация изложена грамотно, сам в свое время перечитал много различного материала на эту тему. Все изложено верно, можно взять на заметку, да и как руководство к выбору бойлера к себе домой вполне подойдет.

Тепловой насос для отопления дома: принцип работы, разновидности и использование

В условиях ухудшения экологической обстановки в мире и (что более актуально для рядового потребителя) стремительного роста тарифов на газ и электричество все больше европейцев старается внедрить в свою повседневную жизнь системы, использующие альтернативные источники энергии. Один из вариантов подобных систем – так называемый тепловой насос, посредством которого можно отапливать свое жилище в зимний период и нагревать воду для бытовых нужд, расходуя на это минимум электроэнергии.

В домах наших соотечественников в последние годы тоже все чаще можно встретить это чудо инженерной мысли. Конечно, для россиян проблема высоких цен на традиционные энергоносители пока стоит не так остро, как в Европе, но, во-первых, это лишь до поры до времени, а во-вторых, не хочется отставать от цивилизованного мира…

Итак, тепловой насос… Что это такое? На чем основан принцип его действия? Откуда, куда и как он перекачивает тепло? Давайте разбираться.

Принцип работы теплового насоса

Принцип действия тепловых насосов основан на способности вещества (хладагента) поглощать или отдавать тепло при изменении агрегатного состояния. По своей сути такие насосы мало чем отличаются от холодильных установок. (Это странное, на первый взгляд, утверждение нисколько вас не удивит, если вы хоть раз дотрагивались до горячей задней стенки обычного бытового холодильника.)

Схематично тепловой насос может быть представлен в виде системы, состоящей из трех контуров. В первом находится теплоноситель, переносящий энергию от источника низкопотенциального тепла. Во втором контуре циркулирует хладагент (фреон), который периодически то испаряется, отбирая тепло у первого контура, то вновь конденсируется, отдавая его третьему контуру. И, наконец, по третьему контуру «бегает» теплоприемник, в нашем случае – вода, переносящая тепло по системе отопления.

Рабочий цикл теплонасоса в общих словах может быть описан следующим образом. Жидкий хладагент поступает в испаритель, где переходит в газообразное состояние. Необходимая для протекания этого процесса энергия отбирается у теплоносителя, циркулирующего в первом контуре. Далее подогретый на несколько градусов газообразный хладагент всасывается в компрессор, главное назначение которого – сжатие газа (на совершение этой работы, разумеется, расходуется электроэнергия).

Давление газа возрастает в несколько раз, при этом он существенно разогревается: если на входе в компрессор температура хладагента составляет 6-10°C, то на выходе уже около 60°C. На следующей стадии разогретый газ направляется в конденсатор, где отдает полученное тепло системе отопления, сам же при этом конденсируется, т.е. переходит в жидкое состояние. Затем избыточное давление сбрасывается с помощью дроссельного клапана, и цикл начинается заново.

Как видите, устройство теплового насоса не отличается принципиально от устройства холодильной машины. Просто основным назначением холодильных установок является генерирование холода, поэтому там отбор теплоты производится испарителем, а конденсатор лишь сбрасывает эту теплоту в окружающее пространство. В тепловом же насосе картина обратная: конденсатор представляет собой теплообменный аппарат, отдающий теплоту потребителю, а испаритель – это теплообменник, утилизирующий низкопотенциальную теплоту вторичных энергоресурсов.

Другими словами тепловой насос – это «холодильник наоборот». При этом «наоборот» не только устройство, но и результат. Если в случае холодильника тепло, отнимаемое у хранящихся внутри продуктов, выбрасывается впустую, то энергия, вырабатываемая тепловым насосом, приносит реальную пользу – тратится на целенаправленный обогрев дома.

Разновидности тепловых насосов и систем

Тепловая энергия, расходуемая на отопление здания и систему горячего водоснабжения, является результатом преобразования энергии окружающей среды, осуществляемого с помощью теплового насоса. Насос концентрирует эту низкопотенциальную (низкотемпературную) энергию и передает ее системе отопления.

Осталось разобраться, что в данном случае подразумевается под энергией окружающей среды. Большинство тепловых насосов бытового назначения позволяют использовать тепло Солнца и внутреннее тепло Земли, накапливаемые верхними слоями земной коры и водой в течение всего года.

По типу конструкции первого контура теплообменника все тепловые насосы делятся на грунтовые, водяные и воздушные.

Грунтовые тепловые насосы

Грунтовые тепловые насосы получают тепло, необходимое для подогрева хладагента в испарителе, от грунта. Температура последнего на глубине нескольких метров практически не подвержена сезонным колебаниям. По замкнутой системе труб, размещенных в грунте, циркулирует «рассол». Слово «рассол» мы не случайно взяли в кавычки: соли, как этого можно было бы ожидать исходя из названия, он не содержит. На самом деле это антифриз на основе этиленгликоля или пропиленгликоля, реже водного этанола. Трубы теплообменника могут быть уложены в грунте как горизонтальным (горизонтальный коллектор), так и вертикальным (геотермальный зонд) способом.

Трубы горизонтального коллектора укладываются в землю на глубине ниже уровня промерзания грунта в данном регионе (обычно 1.5-2 м). Теплообменная система этого вида занимает достаточно большую площадь. Например, для обеспечения теплом сравнительно небольшого дома площадью 100 м2 потребуется выделить 2-3 сотки земли. Следует принять во внимание, что на территории, занятой коллектором, можно садить лишь те деревья и кустарники, корни которых не уходят в почву слишком глубоко, а располагать здесь какие-либо постройки и вовсе нельзя.

Геотермальный зонд – это теплообменник, трубы которого располагаются вертикально и погружены в грунт на глубину до 100-200 м. Количество устанавливаемых зондов зависит от требуемой мощности установки. Для обогрева дома, уже рассматриваемого нами выше в качестве примера, достаточно будет двух зондов длиной около 80 м, расположенных на расстоянии 5 м друг от друга.

Как видите, для размещения этой системы не требуется больших площадей, вы можете пробурить скважины в любой части вашего участка – там, где вам это удобно. Главный недостаток грунтовых тепловых насосов с геотермальными зондами – высокая стоимость работ по бурению скважин. Однако, невзирая на это, большинство пользователей отдает предпочтение именно этим системам, ведь геотермальные зонды обладают большей эффективностью, чем горизонтальные коллекторы, и имеют при этом меньше ограничений.

Бурение скважины для геотермального зонда.

Водяные тепловые насосы

Водяной тепловой насос «черпает» энергию грунтовых вод, которые прокачивает через свой испаритель. Подобная система отличается повышенной эффективностью и неплохой стабильностью: первая характеристика является результатом высокой теплоотдачи воды, вторая обусловлена постоянством температуры грунтовых вод.

Разумеется, чтобы использовать установку такого типа, требуется, чтобы эти самые грунтовые воды имелись на вашей территории, причем в достаточно большом количестве. Очень желательно, чтобы водоносный слой располагался не глубже 30-40 м. Одновременное выполнение этих двух условий – явление нечастое. Еще одним условием, невыполнение которого может стать препятствием для установки водяного теплонасоса в вашем доме или коттедже, является низкое содержание в грунтовых водах солей железа и прочих примесей.

Использование воды низкого качества приведет к тому, что оборудование быстро выйдет из строя, поскольку теплообменник попросту забьется. Наличие такого количества ограничений является причиной того, что подобные тепловые насосы, несмотря на всю их привлекательность, устанавливают нечасто (около 5% от всех реализованных проектов).

Воздушные тепловые насосы

С точки зрения простоты монтажа воздушные тепловые насосы обладают огромным преимуществом перед своими «собратьями». Для использования окружающего воздуха в качестве источника тепла вам не придется бурить скважины или проводить какие-то другие крупномасштабные грунтовые работы. В результате, если заложить в смету стоимость работ по установке оборудования, воздушный насос обойдется вам значительно дешевле, чем водяной или грунтовый.

Несмотря на столь весомое достоинство, идеальным этот вид климатического оборудования не назовешь, поскольку есть у него и существенный недостаток. Такой насос эффективно работает лишь при температуре окружающего воздуха выше –15°C…–20°C. Падение температуры ниже этой границы, что в зимний период не является редкостью в большинстве регионов нашей страны, ведет к существенному уменьшению коэффициента эффективности воздушного теплонасоса.


Коэффициент эффективности тепловых насосов

Чуть выше мы использовали новый термин – «коэффициент эффективности». Было бы неправильно не пояснить, что это такое, тем более что это важная характеристика тепловых насосов, позволяющая сравнивать насосы разных типов между собой.

Коэффициент эффективности (называемый также коэффициентом трансформации) – это отношение выработанной насосом тепловой энергии к потребленной им электрической. По сути это КПД теплового насоса. В случае водяных теплонасосов этот коэффициент равен 5 вне зависимости от времени года. Это означает, что при потреблении 1 кВт*ч электроэнергии установка вырабатывает 5 кВт*ч тепловой энергии.

У грунтовых насосов величина коэффициента эффективности чуть ниже – от 4 до 4.5. И, наконец, самым маленьким коэффициентом характеризуются воздушные тепловые насосы, при этом их эффективность сильно зависит от температуры окружающего воздуха: при 0°C величина коэффициента равна ~3.5, а при –20°C он уже не превышает 1.5 (при такой низкой эффективности насос попросту не окупится, и имеет смысл подумать о приобретении более дешевого климатического оборудования, например электрического котла).

Некоторые менеджеры, рекламируя реализуемые ими тепловые насосы, уверяют потенциальных клиентов в том, что данное оборудование имеет КПД 400-500%. Разумеется, ни о каком нарушении законов термодинамики речи не идет. Просто в данном случае расчеты намеренно делаются неправильно: не учитываются источники энергии, отличные от потребляемого электричества, – воздух, вода или грунт, нагретые Солнцем и геотермальными процессами. Когда при расчете КПД учитывают только электроэнергию и забывают про источник низкопотенциального тепла, как раз и получается величина больше 100%.

Применение тепловых насосов в условиях российского климата

Познакомившись с приведенными выше описаниями различных типов тепловых насосов, вы без труда сами сможете ответить на вопрос, какой насос больше всего подходит для эксплуатации в условиях российского климата.

Воздушные тепловые насосы пригодны для применения лишь в ограниченном числе регионов нашей страны – там, где температура воздуха зимой почти не опускается ниже нулевой отметки. Разумеется, жителям Сибири, Дальнего Востока, севера европейской части России о воздушных тепловых насосах не стоит и размышлять.

Для применения водяных тепловых насосов есть много ограничений. О некоторых из них мы уже рассказывали, осталось упомянуть еще об одном. Более половины территории нашей страны находится в зоне вечной мерзлоты. Если даже какому-нибудь жителю Восточной Сибири или севера Дальнего Востока «повезло», и на его участке есть грунтовые воды, залегающие не слишком глубоко, то все равно эти грунтовые воды находятся в виде льда, а значит, не пригодны для использования в системе отопления.

Таким образом, большинству наших соотечественников приходится рассчитывать на единственный, беспроигрышный, вариант – грунтовый тепловой насос. При этом в условиях российского климата больше подойдет насос не с горизонтальным коллектором, а с геотермальным зондом, позволяющим достигнуть глубины, где температура грунта более стабильна.

Применение теплового насоса для охлаждения

Огромным достоинством тепловых насосов является то, что они способны не только отапливать дом, но и при необходимости охлаждать его. Наше короткое российское лето порою бывает очень жарким, и, когда ваше жилище буквально раскаляется, предложение превратить обогреватель в кондиционер будет очень кстати.

Техническое решение этого вопроса может быть интегрировано в тепловой насос изначально, на стадии изготовления, и практически у всех производителей имеются линейки насосов, умеющих кондиционировать помещение (режим Natural Cooling). Если ваш тепловой насос не обладает такими способностями, не все еще потеряно – работать на охлаждение может и обычный насос. Необходимое для этого дополнительное оборудование в виде гидравлической развязки будет смонтировано вне насоса. Оба варианта не требуют больших капиталовложений.

Нести генерируемый тепловым насосом холод непосредственно в помещение можно разными способами. Эта функция может быть возложена на холодные панели на стенах или потолке, охлаждающий теплый пол, радиаторы отопления с хорошим обдувом или же фанкойл – устройство, в чей корпус встроен обдуваемый вентилятором пластинчатый теплообменник.

Применение теплового насоса для горячего водоснабжения

Любой тепловой насос способен не только обогревать ваше жилище, но и круглогодично снабжать вас горячей водой. Однако следует учитывать, что эта система является низкотемпературной, а значит, температура воды в бойлере не превысит 45-55°C. Из этого следует, что объем бойлера должен быть больше, чем при использовании стандартной системы отопления, в противном случае вам и вашим домочадцам придется жить в условиях жесткой экономии горячей воды.

Данный факт следует учитывать при выделении площади для котельной, т. е. еще на стадии проектирования дома. Также при выборе бойлера нужно принимать во внимание, что это должно быть специальное оборудование, рассчитанное на работу с теплонасосными установками. Главное отличие такого бойлера от обычного – увеличенная площадь теплообменника, необходимая для максимально эффективной передачи тепла от теплового насоса.


Тепловые насосы со встроенным ТЭНом

Нередко производители встраивают в свои тепловые насосы дополнительные электрические нагреватели. Встроенный ТЭН позволяет в случае необходимости перейти на альтернативный с точки зрения теплового насоса источник энергии – электричество. Для чего это нужно? В каких случаях возникает потребность задействовать ТЭН?

Подбор теплового насоса для отопления дома осуществляется с учетом различных параметров, в том числе и климатических особенностей региона. При этом считается нецелесообразным устанавливать насос с избыточной мощностью. Дело в том, что экстремально холодные дни случаются не так уж и часто, по крайней мере, в центрально-европейской части России. Практика показывает, что более экономичным вариантом будет «добрать» в эти морозные периоды необходимую мощность электричеством, чем изначально устанавливать более мощный насос. Наличие ТЭНа исключает необходимость делать систему более мощной, чем это требуется большую часть отопительного сезона.

Для владельцев водяных и грунтовых тепловых насосов встроенный ТЭН – скорее излишество, чем необходимость. Совсем иначе выглядит ситуация с воздушными теплонасосами. При температуре воздуха –20°C и ниже такой насос, если и не отключится, будет малоэффективен. И пусть холодных дней и ночей в году не очень много, совсем не хочется в один прекрасный момент остаться в стремительно вымерзающем доме. Наличие дублирующего теплогенератора в данном случае никак не назовешь роскошью.

Воздушный тепловой насос.

Советы и рекомендации

Тепловой насос – оборудование технически сложное и достаточно дорогое, поэтому подходить к его выбору следует с большой ответственностью. Чтобы не быть голословными, приведем несколько вполне конкретным рекомендаций.

1. Никогда не приступайте к выбору теплового насоса без предварительного проведения расчетов и создания проекта. Отсутствие проекта может стать причиной фатальных ошибок, исправить которые можно будет лишь с помощью огромных дополнительных финансовых вложений.

2. Доверить проектирование, монтаж и сервисное обслуживание теплового насоса и системы отопления следует только профессионалам. Как убедиться в том, что в данной компании работают профессионалы? В первую очередь, по наличию всей необходимой документации, портфолио реализованных объектов, сертификатов от поставщиков оборудования. Очень желательно, чтобы весь комплекс необходимых услуг предоставляла одна компания, которая в данном случае будет нести полную ответственность за реализацию проекта.

3. Советуем вам отдать предпочтение тепловому насосу европейского производства. Пусть вас не смущает тот факт, что он дороже китайского или российского оборудования. При включении в смету стоимости работ по монтажу, запуску и отладке всей системы отопления разница в цене насосов будет практически незаметна. Но зато, имея в своем распоряжении «европейца», вы будете уверены в его надежности, поскольку высокая цена насоса – это лишь результат использования при его создании современных технологий и высококачественных материалов.

Вам будет интересно Обновлено: 01 октября 2018 7955 ПОДЕЛИТЬСЯ:

Пароварка (паровая печь) — это электрический прибор, в котором можно готовить различные блюда с использованием горячего пара. Пароварки, как и другие электрические устройства, являются, в первую очередь, инструментами для облегчения и автоматизации кухонной работы.

Паровая кулинария обладает некоторыми преимуществами перед другими способами готовки. Вот только несколько из них:
  • Нет необходимости использовать масло или жир.
    Приготовление пищи на пару позволяет готовить с небольшим количеством жира или без него. Даже при готовке мяса происходит растворение животного жира, а не его сжигание. Благодаря этому отсутствует образование канцерогенов.
  • Сохраняется большинство витаминов, минералов и микроэлементов.
    Такая пароварка отличается своей процедурой приготовления с мягким паром, который сохраняет витамины и антиоксиданты: 77% витамина С и 100% антиоксидантных полифенолов.
  • Не страдает внешний вид и вкус пищи.
    Существует достаточно распространенное заблуждение, что пища, приготовленная на пару, безвкусная и пресная. Все наоборот. Поскольку пар мягко и неагрессивно воздействует на пищу, она сохраняет свой аутентичный вкус и аппетитный вид. Кроме того, при приготовлении паром вы можете тонко приправить свои блюда, добавив немного бульона в воду, которая образует пар, или украсить вкус овощей, мяса или рыбы с помощью специй и душистых трав.
Пароварка против пестицидов

Для тех, кто обеспокоен потреблением овощей, обработанных пестицидами, приготовление на пару рекомендуется особенно. Водяной пар устраняет пестициды на поверхности овощей, не требуя их предварительной очистки, что сохраняет максимум витаминов и питательных веществ.

Вот преимущества приготовления пищи на пару, рекомендуемого диетологами и врачами, но, в первую очередь, предлагающего натуральный вкус продуктов, которые вы едите, без добавления различных жиров и соли.

Как устроена и работает электрическая пароварка

Предлагаемые сегодня производителями модели устройств для варки на пару разнообразны по функционалу, но основные детали и принцип действия общий для всех:

  • Необходимо залить свежую водопроводную воду в лоток, прежде чем разместить его под перфорированными корзинами, в которых расположены ваши продукты. Корзины ставятся друг на друга, и накрываются сверху плотной крышкой.
  • Когда пароварка включена, открывается клапан. Вода из лотка подается в испарительную посуду на дне основания.
  • Под испарительной посудой находится нагревательный элемент или парогенератор.
  • Вода начинает кипеть в испарителе, затем испаряется.
  • Пары окутывают пищу и готовят ее деликатно и без усилий.
  • Таймер позволяет запрограммировать время приготовления, не заставляя следить за прибором, и позволяя одновременно варить несколько видов продуктов.

Как выбрать

Паровая мощность

Мощность устройства очень важна при выборе. Есть модели с малой и средней мощностью от 600 Вт до 1000 Вт, которые работают очень хорошо. Но, чтобы сэкономить время на приготовление пищи, вы можете выбрать наиболее мощные модели до 2000 Вт.

Количество контейнеров для продуктов

Большинство пароварок имеют три ярусных контейнера с отверстиями в дне для прохождения пара. Их можно использовать отдельно или в сочетании, чтобы обеспечить достаточную мощность для приготовления блюд для всей семьи, и можно даже переставлять во время готовки, чтобы изменить температуру.

Некоторые модели имеют контейнеры различного размера, которые могут вставляться друг в друга. Это делает их компактными для хранения, но не очень удобными, если вам необходимо менять высоту корзины в процессе варки.

Более дорогие устройства поставляются с рисовой миской — небольшим блюдом, которое помещается внутри одной из перфорированных корзин, для варки на пару риса и других злаковых. Это может занять больше времени, но в итоге получится нежное рассыпчатое совершенство.

Объем паровых корзин

Емкость контейнеров для продуктов измеряемая в литрах также очень важна. От этого зависит количество пищи, которое можно приготовить за один раз. Объем корзин варьируется от 6 до 10 л. Для больших семей предпочтительнее выбрать способность готовить большое количество. Хороший ориентир: объем 9 л. подходит для 8 человек.

Тип управления

Пароварка может использовать механический или электронный тип управления. Механическое управление осуществляется регулированием подачи пара с помощью поворота рукоятки управления. Кнопки электронного управления позволяют выбрать нужный режим автоматически.

Механический тип управления прост и надежен в обращении. Но если для вас важны дополнительные опции, например, поддержание тепла приготовленных блюд или включение по расписанию, то электроника — это ваш вариант.

При использовании технологии «отложенного старта» прибор приготовит еду, даже в вашем отсутствии. Он останавливается автоматически при завершении приготовления. А с опцией «поддержание тепла» пароварка будет держать ваши блюда в теплом состоянии, пока вы не решите наслаждаться ими с полным спокойствием.

Материал контейнеров

Большинство корзин изготавливается из прозрачного пластика, что удобно для контроля за процессом приготовления, но существуют также чаши более высокого класса — из нержавеющей стали, очень эстетичного и хорошо сохраняющего тепло материала.

Дополнительные функции

Их присутствие вовсе не обязательно, но делает приготовление пищи с помощью этих устройств более комфортным:

  • Вынимающиеся поддоны для сбора стекающего с продуктов сока и конденсата под каждым контейнером позволяют не смешиваться вкусам и запахам.
  • Наличие специальных лотков для яиц делает очень удобной их варку.
  • Настоящая революция этих устройств — это функция «Витамин +», которая максимально сохраняет антиоксиданты и витамины в продуктах питания.

Достоинства применения

  • Небольшая потеря питательных веществ: при приготовлении на пару продукты не погружаются в воду и, следовательно, сохраняют свои витамины и минералы. Например, исследования показали, что приготовленная на пару брокколи содержит на 50% больше витамина С, чем вареная брокколи.
  • Обезжиривание: когда мясо готовится на пару, жир отделяется от мяса и стекает в поддон вместе с конденсатом.
  • Подогрев и размораживание: вы можете разогревать продукты, или размораживать их, не теряя влаги, текстуры и натуральных ароматов.
  • Аппетитный внешний вид: при приготовлении на пару продукты сохраняют свой естественный цвет. Кроме того, нет необходимости перемешивать или переворачивать их, а это означает, что деликатные продукты, такие как рыба, сохранят свою форму и не высохнут.
  • Полнота натуральных вкусов: Соль не требуется, так как пар, естественным образом, захватывает весь вкус пищи.
  • Разнообразие меню: Пропаривание позволяет вам готовить сразу несколько продуктов без смешивания их вкусов.
  • Простота в эксплуатации: Поскольку они не требуют масла, электрические пароварки легко мыть как вручную, так и в посудомоечной машине. Также они достаточно компактны, то есть не занимают слишком много места на кухне.

Недостатки

Самым главным недостатком такого электрического прибора является, конечно, достаточно высокая стоимость. Впрочем, учитывая разнообразие моделей, можно выбрать подходящую именно вашим потребностям и размеру вашего кошелька.

ПОНЯТИЕ И ВИДЫ СПЕКТРОМЕТРА.

  • Авторы
  • Файлы работы

Гноевая В.Г. 1 1НИУ «БелГУ» Комментарии Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF

Спектрометр (лат. spectrum от лат. spectare — смотреть и метр от др.-греч. μέτρον — мера, измеритель) — оптический прибор, используемый в спектроскопических исследованиях для накопления спектра, его количественной обработки и последующего анализа с помощью различных аналитических методов.

Анализируемый спектр получается путем регистрации флуоресценции после воздействия на исследуемое вещество каким-либо излучением (рентгеновским или лазерным излучением, искровым воздействием и др.). Обычно измеряемыми величинами являются интенсивность и энергия (длина волны, частота) излучения, но могут регистрироваться и другие характеристики, например, поляризационное состояние.

Спектр, лежащий в фокальной плоскости, можно рассматривать глазом с помощью окуляра. Такой прибор называется спектроскопом. В спектрографах такой спектр регистрируется на фотопластинку или иной многоканальный приёмник излучения. Если выходную щель и отклоняющий свет элемент (призма или дифракционная решётка) перемещать друг относительно друга, то получим монохроматор, в котором используются разнообразные по принципу действия приёмники излучения.

По способу разложения в спектр различают следующие спектрометры: дифракционный, призменный и интерференционный.

По принципу действия можно выделить следующие виды спектрометров:

-Рентгено-флуоресцентный спектрометр;

-Атомно-эмиссионный спектрометр;

-ИК — спектрометр;

-Масс-спектрометр;

-Атомно-абсорбционный спектрометр;

-Фурье-спектрометр;

-Рамановский спектрометр.

Рентгено-флуоресцентный спектрометр

Спектрометр данного типа предназначен для определения содержания химических элементов в различных веществах, находящихся в твердом, порошкообразном или растворенном состояниях, а также нанесенных на поверхности и осажденных на фильтры. С его помощью можно определить содержание железа, золота, драгметаллов, кальция, серы, калия, йода, цинка, фосфора, хлора, проанализировать почву, воду и минералы.

Области применения:

  • металлургия,
  • химическая и горная промышленность,
  • геология и минералогия,
  • машиностроение и инженерная диагностика двигателей,
  • золотодобыча,
  • переработка редких и драгоценных металлов,
  • нефтедобыча,
  • транспортировка и переработка нефтепродуктов,
  • экология и сельское хозяйство,
  • пищевая промышленность,
  • искусствоведческая, криминалистическая и судебно-медицинская экспертиза.

Принцип действия.

В данных спектрометрах излучение рентгеновской трубки возбуждает атомы исследуемого вещества. При этом возникает вторичное флуоресцентное излучение, которое попадает на диспергирующий элемент — кристалл-анализатор. Отразившись от него, излучение регистрируется детектором. Кристалл-анализатор и детектор перемещаются с помощью прецизионного гониометра, который управляется с компьютера. Каждому положению гониометра соответствует определенная длина волны вторичного излучения. При изменении угла падения излучения на детектор, в него попадают разные спектральные линии, которые отражаются от кристалла.

Интенсивность спектральных линий говорит о количественном содержании того или иного элемента. Концентрация рассчитывается методом сравнения с известными значениями стандартных образцов (наличие самих образцов при этом не требуется).

Для улучшения результатов и определения легких элементов таких как натрий, магний, алюминий, кремний, фосфор, сера используется вакуумная откачка воздуха либо продувка камеры гелием. Это позволяет минимизировать влияние атмосферы на получаемые результаты. Кроме того, на качество результатов влияет пробоподготовка исследуемых материалов к тестам. Если исследуется твердое вещество, то его поверхность необходимо зачистить и удалить грязь. Если исследуемое вещество — порошок, то его необходимо спрессовать в таблетку, особенно в случае теста на легкие элементы.

Атомно-эмиссионный спектрометр

Атомно-эмиссионный спектральный анализ — это совокупность методов элементного анализа, основанных на изучении спектров испускания свободных атомов и ионов в газовой фазе. Обычно эмиссионные спектры регистрируют в наиболее удобной оптической области длин волн от 200 до 1000 нм.

АЭС (атомно-эмиссионная спектрометрия) — способ определения элементного состава вещества по оптическим спектрам излучения атомов и ионов анализируемой пробы, возбуждаемым в источниках света. В качестве источников света для атомно-эмиссионного анализа используют пламя горелки или различные виды плазмы, включая плазму электрической искры или дуги, плазму лазерной искры, индуктивно-связанную плазму, тлеющий разряд и др. АЭС — самый распространённый экспрессный высокочувствительный метод идентификации и количественного определения элементов примесей в газообразных, жидких и твердых веществах, в том числе и в высокочистых.

Области применения:

  • Металлургия: анализ состава металлов и сплавов,
  • Горнодобывающая промышленность: исследование геологических образцов и минерального сырья,
  • Экология: анализ воды и почвы,
  • Техника: анализ моторных масел и др. технических жидкостей на примеси металлов,
  • Биологические и медицинские исследования.

Принцип действия.

Принцип действия атомно-эмиссионного спектрометра достаточно прост. Он основан на том, что атомы каждого элемента могут испускать свет определенных длин волн — спектральные линии, причем эти длины волн разные для разных элементов. Для того чтобы атомы начали испускать свет, их необходимо возбудить — нагреванием, электрическим разрядом, лазером или каким-либо иным способом. Чем больше атомов данного элемента присутствует в анализируемом образце, тем ярче будет излучение соответствующей длины волны.

Рис.1

На рисунке 1 приведена функциональная схема атомно-эмиссионного спектрометра. Он состоит из следующих основных частей:

  • штатив, в который устанавливается анализируемая проба с источником возбуждения спектра — устройством, которое заставляет атомы пробы излучать свет;
  • полихроматор, раскладывающий излучение пробы в спектр и позволяющий разделить излучение различных атомов, т.е. выделить спектральные линии анализируемых элементов;
  • приемники излучения (например, фотоэлектронные умножители — ФЭУ) с системой регистрации, которые преобразуют свет в электрический сигнал, регистрируют его и передают в компьютер;
  • компьютер, вычисляющий концентрации анализируемых элементов и управляющий всеми узлами прибора.

Интенсивность спектральной линии анализируемого элемента, помимо концентрации анализируемого элемента, зависит от большого числа различных факторов. По этой причине рассчитать теоретически связь между интенсивностью линии и концентрацией соответствующего элемента невозможно. Вот почему для проведения анализа необходимы стандартные образцы, близкие по составу к анализируемой пробе. Предварительно эти стандартные образцы экспонируются (прожигаются) на приборе. По результатам этих прожигов для каждого анализируемого элемента строится градуировочный график, т.е. зависимость интенсивности спектральной линии элемента от его концентрации. Впоследствии, при проведении анализа проб, по этим градуировочным графикам и производится пересчет измеренных интенсивностей в концентрации.

Подготовка проб для анализа.

Следует иметь виду, что реально анализу подвергается несколько миллиграммов пробы с ее поверхности. Поэтому для получения правильных результатов проба должна быть однородна по составу и структуре, при этом состав пробы должен быть идентичным составу анализируемого металла. При анализе металла в литейном или плавильном производстве для отливки проб рекомендуется использовать специальные кокили. При этом форма пробы может быть произвольной. Необходимо лишь, чтобы анализируемый образец имел достаточную поверхность и мог быть зажат в штативе. Для анализа мелких образцов, например прутков или проволоки, могут быть использованы специальные адаптеры.

Преимущества метода:

  • Бесконтактность,
  • Возможность одновременного количественного определения большого числа элементов,
  • Высокая точность,
  • Низкие пределы обнаружения,
  • Простота пробоподготовки,
  • Низкая себестоимость.

ИК спектрометр

Инфракрасная (ИК) спектроскопия — один из неразрушающих аналитических методов исследования различных материалов. Этот метод используется в физике твердого тела, физической химии, органической и неорганической химии, биохимии и др.

Области применения:

  • Химия и нефтехимия. Качественный и количественный анализ сырья, промежуточных и конечных продуктов синтеза. Анализ топлив: эфиры, спирты, ароматика, октановое число. Фракционный и структурно-групповой анализ нефтепродуктов.
  • Химия полимеров. Состав сополимеров. Синтетические каучуки: состав, структурные характеристики. Анализ модифицирующих добавок: пластификаторы, антиоксиданты.
  • Фармацевтическая промышленность. Определение подлинности субстанций по ИК-стандартам, контроль качества лекарственных форм и сырья.
  • Газовый анализ. Анализ многокомпонентных газовых смесей. Контроль качества продукции газовой промышленности, анализ состава природного газа.
  • Электронная промышленность. Контроль качества полупроводникового кремния и параметров полупроводниковых структур. Анализ состава технологических газов.
  • Пищевая и парфюмерная промышленность. Экспрессный контроль сырья и готовой продукции: содержание белков, клетчатки, жира, влаги.
  • Экологический контроль. Контроль нефтепродуктов в воде и почве. Контроль атмосферного воздуха, воздуха рабочей зоны и выбросов промышленных предприятий.
  • Криминалистика. Идентификация природных веществ и синтетических материалов в микропробах и микроколичествах.

Принцип действия.

Метод ИК-спектроскопии основан на том, что при облучении вещества немонохроматическим инфракрасным излучением происходит возбуждение колебательных и электронных степеней свободы — из-за этого происходит поглощение падающего излучения на частотах, соответствующих разнице энергий колебательных и электронных уровней. В спектре пропускания либо отражения облучаемого образца появляются особенности, позволяющие судить о характерных частотах колебаний молекул, кристалла и их электронных свойствах. Спектральные характеристики (положения максимумов полос, их полуширина, интенсивность) зависят от масс составляющих вещество атомов, геометрического строения, особенностей межатомных сил, распределения заряда и др.

Основные преимущества ИК спектрометров:

  • Высокая чувствительность,
  • Экспрессность,
  • Автоматизация измерений,
  • Простота эксплуатации,
  • Модульная конструкция.

Масс-спектрометр

Масс-спектрометр — прибор для разделения ионизированных частиц вещества (молекул, атомов) по их массам, основанный на воздействии магнитных и электрических полей на пучки ионов, летящих в вакууме. Регистрация ионов в данном устройстве осуществляется электрическими методами.

Принцип работы.

Нейтральный атом не подвержен действию электрического и магнитного поля. Однако, если отнять у него или добавить ему один и более электронов, то он превратится в ион, характер движения которого в этих полях будет определяться его массой и зарядом. Строго говоря, в масс-спектрометрах определяется не масса, а отношение массы к заряду. Если заряд известен, то однозначно определяется масса иона, а значит масса нейтрального атома и его ядра.

Этап 1: Ионизация

Образование положительно заряженного иона, путем выбивания одного или нескольких электронов из атома (масс-спектрометры всегда работают с положительными ионами).

Этап 2: Ускорение

Ионы ускоряются таким образом, чтобы у всех была одна и та же кинетическая энергия.

Этап 3: Отклонение

Ионы отклоняются от траектории магнитным полем согласно их массам. Чем легче ион, тем больше он отклоняется. Величина отклонения также зависит от числа положительных зарядов в ионе — другими словами, от того, сколько электронов было выбито на первом этапе. Чем больше ион заряжен, тем больше он отклоняется.

Этап 4: Детектирование

Пучок ионов, прошедший через прибор, детектируется электронными средствами.

В соответствии с конструкцией анализатора масс существуют пять ос­новных типов масс-спектрометров (МС):

1) секторные магнитные и (или) электрические МС

Ионы, покидающие источник ионов, ускоряются и про­ходят через сектор, в котором магнитное (или электрическое) поле прикладывается перпендикулярно к направлению их дви­жения. Поле изгибает траекторию полета ионов и принуждает ионы с различным отношением m/z разлетаться веером. В ска­нирующем анализаторе масс изменяют силу электрическо­го или магнитного поля, при этом каждый раз регистрируется только одна масса. В несканирующем анализаторе все мас­сы регистрируются одновременно с помощью многоканального детектора;

2) квадрупольные МС

Пучок ионов с помощью элек­трического поля разгоняется до высокой скорости и проходит сквозь квадрупольный анализатор масс, состоящий из четырех металлических стержней. К этим стержням прилагается напря­жение постоянного или переменного тока таким образом, что в каждый момент времени сквозь анализатор пролетают ионы толь­ко с одним соотношением массы к заряду — m/z. Чтобы просканировать различные m/z, напряжение тока варьируют;

3) МС с ионной ловушкой

С помощью различных высокочастотных сигналов, которые прилагаются к кольцево­му электроду и концевым заглушкам, все ионы улавливаются в полости и затем последовательно испускаются соответственно величине их отношений m/z. После прохождения через ускоряющую разность потенциалов ион с зарядом z, массой m и скоростью v при­обретает кинетическую энергию Е=zV=mv2/2);

4) времяпролетные МС

Времяпролетные масс-спектрометры отличаются тем, что в них с по­мощью, например, импульса ионизирующего лазера или с помощью импульса высокого напряжения в электрическом затворе ионы стартуют в одно и то же время. Времяпролетные масс-спектрометры (ВП-МС) обычно менее до­рогие, чем другие типы масс-спектрометров. По сравнению с квадрупольными МС и многими секторными МС они обладают тем пре­имуществом, что регистрируют массы всех ионов без сканирования, что способствует их высокой чувствительности. Однако у ВП-МС меньшая разрешающая способность и меньший интервал регистри­руемых масс, чем у масс-спектрометров с преобразованием Фурье (МС-ПФ);

5) МС с преобразованием Фурье

Принцип работы масс-спектрометра с преобразованием Фу­рье (МС-ПФ).

а — ионы впрыскиваются (инжектируются) в ячейку анализатора. Маг­нитное поле вынуждает тепловые ионы вращаться по низким орби­там, радиус которых зависит от отношения массы ионов к их заряду m/z,

б — прилагаемые высокочастотные импульсы резонансно пере­двигают ионы на более высокие орбиты;

в — высокочастотный сиг­нал, порождаемый принудительным вращением ионов, измеряется и подвергается Фурье-преобразованию.

Замечательной особенностью МС-ПФ является высокое разрешение (Л), которое обычно превышает 100000.

Существенное улучшение информационного содержания спектров до­стигается фрагментацией образца, которое можно осуществить, напри­мер, в ионизационной камере или в полости ионной ло­вушки анализатора масс, заполненной инертным газом, например аргоном.

Область применения:

Анализ масс-спектрометром смеси атомов различной массы позволяет определить их относительное содержание в этой смеси. В частности, может быть установлено содержание различных изотопов какого-либо химического элемента.

Атомно-абсорбционный спектрометр

Атомно-абсорбционная спектрометрия — метод количественного элементного анализа по атомным спектрам поглощения (абсорбции). Через слой атомных паров пробы, получаемых с помощью атомизатора, пропускают излучение в диапазоне 190-850 нм. В результате поглощения квантов света атомы переходят в возбужденные энергетические состояния. Этим переходам в атомных спектрах соответствуют так называемые резонансные линии, характерные для данного элемента. Согласно закону Бугера-Ламберта-Бера, мерой концентрации элемента служит оптическая плотность A = lg(I0/I), где I0 и I-интенсивности излучения от источника соответственно до и после прохождения через поглощающий слой.

Атомно-абсорбционный спектрометр — прецизионное устройство, обеспечивающее воспроизводимость условий измерений, автоматическое введение проб и регистрацию результатов измерения.

Области применения:

  • клинические анализы: анализ металлов в биологических жидкостях, таких как кровь и моча,
  • экологический анализ: контроль окружающей среды,
  • контроль лекарственных препаратов,
  • промышленность,
  • горное дело.

Минимально определяемые концентрации.

Пределы обнаружения большинства элементов в растворах при атомизации в пламени 1-100мкг/л, в графитовой печи в 100-1000 раз ниже. Абсолютные пределы обнаружения в последнем случае составляют 0,1-100 пг.

В автоматическом режиме работы пламенный спектрометр позволяет анализировать до 500 проб в час, а спектрометр с графитовой печью — до 30 проб.

Источником линейчатого излучения в спектрометрах чаще всего служат одноэлементные лампы с полым катодом, заполняемые неоном. Для определения некоторых легколетучих элементов (Cd, Zn,Se, Те и др.) удобнее пользоваться высокочастотными безэлектродными лампами.

Также в измерительных приборах для экспериментальных работ используют лазеры. Так как лазеры достаточно интенсивны, чтобы перевести атомы на более высокие энергетические уровни, они позволяют производить атомную абсорбцию и атомные измерения флюоресценции в единственном приборе. Неудобство этих узкополосных источников в том, что за один раз можно измерить только один элемент.

Распылитель.

Атомно-абсорбционная спектрометрия требует, чтобы анализируемые объекты находились в газовой фазе. Перевод анализируемого объекта в атомизированное состояние и формирование поглощающего слоя пара определенной и воспроизводимой формы осуществляется в атомизаторе — обычно в пламени или трубчатой печи.

Атомная абсорбция (АА) в пламени может проанализировать только растворы, в то время как AA в графитовой печи может принять растворы, жидкие растворы, или твердые образцы. Наиболее часто используют пламя смесей ацетилена с воздухом (максимальная температура 2000°С) и ацетилена с N2O (2700°С). Горелку со щелевидным соплом длиной 50-100 мм и шириной 0,5-0,8 мм устанавливают вдоль оптической оси прибора для увеличения длины поглощающего слоя.

Трубчатые печи сопротивления изготавливают чаще всего из плотных сортов графита. Для исключения диффузии паров через стенки и увеличения долговечности графитовые трубки покрывают слоем газонепроницаемого пироуглерода. Максимальная температура нагрева достигает 3000 °С. Менее распространены тонкостенные трубчатые печи из тугоплавких металлов (W, Та, Мо), кварца с нихромовым нагревателем. Для защиты графитовых и металлических печей от обгорания на воздухе их помещают в полугерметичные или герметичные камеры, через которые продувают инертный газ (Аr, N2). У графитовой печи есть несколько преимуществ перед пламенем. Это — более эффективный распылитель, чем пламя, и может распознать очень малые абсолютные количества образца.

Обнаружение веществ.

Для монохроматизации излучения используют призмы или дифракционные решетки (при этом достигают разрешения от 0,04 до 0,4 нм).

При атомно-абсорбционном анализе необходимо исключить наложение излучения атомизатора на излучение источника света, учесть возможное изменение яркости последнего, спектральные помехи в атомизаторе, вызванные частичным рассеянием и поглощением света твердыми частицами и молекулами посторонних компонентов пробы. Для этого пользуются различными приемами, например, модулируют излучение источника с частотой, на которую настраивают приемно-регистрирующее устройство, применяют двухлучевую схему или оптическую схему с двумя источниками света (с дискретным и непрерывным спектрами). Наиболее эффективна схема, основанная на зеемановском расщеплении и поляризации спектральных линий в атомизаторе. В этом случае через поглощающий слой пропускают свет, поляризованный перпендикулярно магнитному полю, что позволяет учесть неселективные спектральные помехи, при измерении сигналов, которые в сотни раз слабее.

Преимущества АА анализа:

  • простота,
  • высокая селективность,
  • малое влияние состава пробы на результаты анализа.

Недостатки АА анализа:

  • невозможность одновременного определения нескольких элементов при использовании линейчатых источников излучения,
  • необходимость переведения проб в раствор.

Фурье — спектрометр

Фурье-спектрометр — это интерферометр Майкельсона, который освещается исследуемым излучением, одно из зеркал перемещается с постоянной скоростью, а получившаяся на выходе кривая зависимости отсчета фотоприемного устройства от разности хода лучей в плечах интерферометра подвергается Фурье-анализу и тем самым преобразуется в распределение интенсивности по частотам (длинам волн). В некоторых случаях такая сложная методика оказывается более эффективной, чем прямой анализ спектра.

Фурье-спектроскопия является эффективным методом изучения колебательных спектров веществ.

Рис. 2

На рисунке 2 изображена оптическая схема фурье-спектрометра:

1 — Источник света.

2 — Фотоприемник.

3 — Зеркала.

С.Д. — светоделитель.

К — компенсатор.

У — устройство изменения разности хода.

Л — линзы (не обязательны).

Области применения:

  • Проведение исследований в ИК области,
  • Фурье-спектроскопия обеспечила существенное продвижение в исследовании колебательно-вращательных спектров молекулярных газов,
  • Газовый анализ, в первую очередь анализ состава атмосферы, как Земли, так и других планет.

Принцип действия.

Пусть разность хода между двумя интерферирующими пучками изменяется по закону Δ = 2vt. При монохроматическом освещении интерферометра интенсивность света, попадающего в приемник 2, изменяется синусоидально: сигнал приемника промодулирован с частотой W = 2kv = 2wv/c. Частота модуляции W зависит от оптической частоты w монохроматического излучения. Измеряя W, можно найти w, т.е. получить информацию о спектре источника. Для получения необходимого спектрального распределения интенсивности излучения по длинам волн (частотам) используют преобразование Фурье. Чем, собственно, и обуславливается название данного метода анализа.

Таким образом, процесс получения спектра методом Фурье-спектрометра сводится к следующим этапам:

— измерение F(Δ) путем регистрации сигнала как функции изменения оптической разности хода;

— экспериментальное определение значения F(0), т.е. регистрация сигнала в точке нулевой разности хода (разность хода в интерферометре будет равна нулю, если оптические длины пути лучей /светоделитель/зеркало/ обоих плеч будут равны). Этой точке соответствует абсолютный максимум отсчетов F(Δ);

— вычисление обратного преобразования Фурье — выражения F(Δ)-0.5 F(0).

Разрешающая способность Фурье-спектрометра.

Разрешающая способность, полученная в спектре, зарегистрированном на Фурье-спектрометре, определяется разностью хода Δ. Оказывается, однако, что разность хода можно делать сколь угодно большой только при достаточно малом входном отверстии. При конечном размере входной диафрагмы после отражения от коллиматора возникают пучки, непараллельные строго оптической оси прибора. Из-за разного наклона разность хода для таких пучков оказывается немного различной, что приводит к уширению аппаратной функции прибора. Чтобы ослабить этот эффект, приходится уменьшать входную диафрагму, однако уменьшение диафрагмы приводит к уменьшению сигнала и, следовательно, к ухудшению отношения сигнал / шум в спектре. На практике часто именно минимально возможная диафрагма и определяет спектральное разрешение.

Таким образом, реальное предельное разрешение фурье-спектрометров очень часто определяется энергетическими условиями: яркостью источника излучения, светосилой, чувствительностью приемника излучения и т.п. В современных приборах высокого класса, снабженных стандартными источниками излучения для измерения спектров поглощения, предельное разрешение составляет около 0,002 см-1.

Преимущества фурье-спектрометров:

1. Выигрыш Жакино. Есть возможность использовать большие телесные углы у источника и приемника. Таким образом через прибор проходит больше светового потока, следовательно происходит более полное использование анализируемого излучения.

2. Выигрыш фелжетта. В каждый момент времени регистрируется весь спектр, поэтому в Фурье-спектрометрах более высокое соотношение сигнал/шум, чем в дифракционных или призменных приборах.

3. Отсутствие ограничений в спектральном разрешении за счет размеров оптических элементов. Трудно ожидать, что размеры дифракционных решеток или тем более призм будут больше 50 см. Таким образом, естественным пределом разрешения приборов, использующих пространственную дисперсию, является величина 0,02 см-1. В то же время уже сейчас налажен серийный промышленный выпуск фурье-спектрометров с разрешением до 0,002 см-1.

4. Поскольку фурье-спектрометры не требуют очень узких входных и выходных щелей, требования к созданию оптических схем без аберраций при их конструкции сильно снижаются. По этой причине становится возможным создание оптических схем с большим отношением диаметра объектива к его фокусу (относительным отверстием), обычно 1 : 3, что делает такие приборы более компактными по сравнению со щелевыми.

Согласно проведенным исследованиям в физике спектроскопические методы используются для изучения всевозможных свойств этих взаимодействий. В аналитической химии — для обнаружения и определения веществ при помощи измерения их характеристических спектров, то есть методами спектрометрии. К существенным преимуществам спектроскопии можно отнести возможность диагностики in situ, то есть непосредственно в «среде обитания» объекта, бесконтактно, дистанционно, без какой-либо специальной подготовки объекта. Поэтому она получила широкое развитие, например, в астрономии.

1. Методы спектрального анализа. А.А. Бабушкин. 1962.

2. Методы спектрального анализа. Л.В. Левшин и др. 1962.

3. Прикладная ИК спектроскопия. Основы, техника, аналитическое применение. А. Смит. 1982.

4. Спектральные приборы и техника спектроскопии. И.М. Нагибина, В.К. Прокофьев. 1967.

5. Спектроскопия. Юрген Беккер. 2009

6. Справочник по лазерам, том 1. А. М. Прохоров. 1978

7. Справочник по лазерам, том 2. А.М. Прохоров. 1978

8. Техника и практика спектроскопии. А.Н. Зайдель. Г.В. Островская, Ю.И. Островский. 1972 год.

Просмотров работы: 12759

Вопрос №11 — Какой утеплитель не способен гореть?

Сытин Константин из Нижнего Новгорода спрашивает:

В преддверии зимы возникла необходимость в утеплении деревянного дома. Какой утеплитель не горит и сможет обеспечить пожаробезопасность деревянной конструкции?

Ответ эксперта:

При выборе теплоизоляционных материалов учитывается множество важных показателей – степень теплопроводности, гигроскопичность и прочее. Но при утеплении деревянного дома особое место отводится огнейстойкости теплоизоляции.

Разновидности негорючих теплоизоляционных материалов

На рынке стойматериалов представлен широкий выбор негорючего утеплителя. Наибольшей популярностью пользуются несколько из них.

Керамзит. В качестве сырья при производстве керамзита применяется глина, которая под воздействием высоких температур преобразовывается в гранулы. Керамзит – сыпучий материал, поэтому его применяют для утепления пола и потолков.

Перлит. В отличие от керамзита, его изготавливают из вулканических горных пород. Перлит способен выдерживать температуру до 900°С. Однако он имеет один существенный недостаток – высокую степень влагопоглощения.

Пеностекло. Изготавливается из силикатных стекол, в которые под воздействием высоких температур добавляют газообразователь. Остывая, механическая прочность стекла значительно увеличивается.

Минеральная вата. Этот вид теплоизоляции является самым распространенным благодаря невысокой стоимости. Минвата состоит из волокон, переплетенных друг с другом. Ее выпускают в виде плит и рулонов, что расширяет сферу применения. Для повышения водоотталкивающих качеств, минвату пропитывают специальными составами.

Популярность минваты обусловлена не только демократичной стоимостью. Этот утеплитель отличается высокой паропроницаемостью, благодаря чему поверхность, закрытая утеплителем, дышит. Это качество особенно ценно при утеплении деревянных конструкций.

Утепление дома минеральной ватой

Виды минеральной теплоизоляции

В зависимости от исходного продукта, минеральный теплоизолятор подразделяется на следующие виды:

  • стекловату;
  • шлаковату;
  • каменную вату.

При производстве стекловаты используется бой стекла, в который добавляют песок, доломит, известняк и соду. Благодаря добавкам, достигается устойчивость к воздействию химических веществ. Свойства стекловаты не изменяются при нагревании до 300°С.

Шлаковата производится из отходов металлургического производства. Исходный материал придает ей характерный серый оттенок. Такой теплоизолятор способен выдерживать нагрев до 600°С.

Каменная вата изготавливается из базальтовых горных пород. Именно поэтому ее принято называть базальтовой ватой. В процессе производства базальтовые горные породы расплавляют, в результате чего образуются волокна. Каменная вата является оптимальным вариантом для утепления жилых домов. Под воздействием открытого огня материал начинает плавиться, но не горит.

Видео: Тест на пожаробезопасность

admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *