0

Что такое дренажный насос

Содержание

Как устроен и для чего предназначен дренажный насос

Обилие разнообразной спецтехники может озадачить не только начинающего домашнего мастера, но и человека с большим опытом. С должной регулярностью пополняющие ассортимент магазинов узкоспециализированные новинки призваны облегчить жизнь человека и это совершенно оправданно. Неопытные мастера частенько интересуются, для чего нужен дренажный насос, и чем он отличается от приборов других типов, таких, как фекальные насосы или насосы для выкачивания воды из скважины и колодца. Принцип их работы схож, но есть и серьезные отличия. Попробуем разобраться.

Для чего нужны дренажные насосы ↑

Основное предназначение дренажных насосов – откачивание жидкости с примесями. Этим они отличаются от скважинных насосов, которые качают только воду без примесей. Дренажные приборы могут работать в самых разных резервуарах: сливных ямах, котлованах, шахтах, в промышленных системах, бытовых канализационных трубопроводах и других очистных установках. Они могут отводить и выкачивать фекальные стоки при обслуживании домов или же в случае подтопления подвала.

Может показаться, что дренажный и фекальный насос идентичны. Это не так, между ними существует принципиальное отличие, которое заключается в допустимом размере твердых частиц в откачиваемых стоках. Для дренажных устройств эта величина варьируется в зависимости от модели аппарата от 3-12 до 120 мм. Фекальные насосы могут функционировать только в жидкостях, в которых твердые включения полностью отсутствуют либо размер их слишком мал. Именно поэтому они обязательно оснащаются измельчителями различных типов.

Устройство и принцип работы дренажников ↑

Конструкция состоит из двигателя и насосного узла, которые помещаются в герметичный корпус. Рабочее колесо двигателя закрепляется на вал ротора и оснащается лопастями. Насосный узел оборудуется решеткой, через которую всасывается жидкость. От диаметра ее отверстий зависит предельно допустимый размер твердых примесей, которые сможет пропускать через себя прибор. Большинство моделей оснащено выключателями поплавкового типа.

Конструкция дренажного насоса

Функционирование дренажных насосов в высокотемпературных средах должно быть ограничено по времени. Связано это с тем, что охлаждение двигателя осуществляется путем отдачи тепла в перекачиваемую жидкость. Существует специальное оборудование, предназначенное для работы в горячих средах, при необходимости нужно выбирать именно его.

Какие бывают дренажные насосы ↑

Поверхностные приборы ↑

Оборудование предназначено для установки на краю резервуара. Функционирует прибор следующим образом: на дно емкости опускают входной патрубок, который всасывает откачиваемую жидкость. Поверхностный насос может работать в автоматическом режиме, для этого к тумблеру включения подводят особый поплавковый механизм, следящий за уровнем жидкости. Как только вода поднимется выше определенной отметки, поплавок поднимается и включает прибор.

Дренажный насос поверхностного типа очень мобилен и прост в обслуживании

Главное преимущество моделей поверхностного типа – мобильность и простота в обслуживании. При необходимости устройство можно просто перенести и установить на новом месте, в случае поломки ремонт выполнить легко и быстро, поскольку все узлы насоса доступны. Небольшой нюанс: если планируется подключение насоса к канализационной системе, необходимо точно знать диаметр труб, поскольку аппарат подводится к ней посредством патрубков.

Погружные модели ↑

Принцип работы погружного устройства в целом аналогичен поверхностному, однако конструкция его иная. Прибор работает непосредственно в откачиваемой среде, поэтому полностью опускается в резервуар с жидкостью. Сточные воды попадают внутрь аппарата не через шланг, как у поверхностного, а через отверстия в днище насоса. Здесь установлен сетчатый фильтр, который предотвращает попадание крупных частиц и камней в импеллер устройства.

Погружные модели работают в автоматическом режиме. Насос включается при накоплении определенного объема жидкости. Оборудование выпускают с усиленной электроизояцией, что предупреждает замыкание. Такая мера совершенно не лишняя, поскольку устройство постоянно находится в жидкой среде. Преимущества насосов погружного типа: высокая мощность и, соответственно, производительность, надежность и долговечность, безопасная эксплуатация.

Дренажный насос погружного типа полностью опускается в перекачиваемую жидкость

На что обратить внимание при выборе прибора

Собираясь приобрести дренажный насос, нужно точно знать, какие характеристики определяют его функциональность. К ним относятся:

  • Производительность

Обязательно указана в технической документации устройства. Представляет собой количество воды, которое аппарат откачивает за единицу времени. Максимальная производительность бытовых насосов – 180 л за минуту. Этого достаточно, чтобы убрать воду из подвала или осушить бассейн.

Обратите внимание! Если точка сброса находится выше аппарата, его производительность теряется. Чем точка сброса выше, тем больше потери.

  • Напор прибора

Чтобы его определить, нам нужно знать примерную высоту и расстояние, на которое будет подаваться вода. Высоту можно определить как разность между точкой выхода жидкости из патрубка и уровнем погружения прибора.

  • Откачиваемая среда

Дренажные насосы предназначены для работы в разных по степени загрязненности средах. В спецификации прибора указан максимально допустимый размер примесей, которые устройство способно пропустить без ущерба для своей работоспособности. Исходя из этого, аппараты делятся на три группы:

  • Для слабозагрязненной или чистой жидкости (примеси размером до 5 мм). Применяются для откачивания воды из бассейнов или дождевых резервуаров.
  • Для среднезагрязненных жидкостей (размер примесей до 25 мм). Используются для осушения колодцев или котлованов.
  • Для грязной жидкости (примеси размером 25-38 мм). Применяются для талой, дождевой или сильно загрязненной воды.

Для работы со слабозагрязненными жидкостями используются приборы, пропускающие примеси размером не более 5 мм

Дренажные насосы хорошо справляются с откачиванием жидкостей с различными примесями. Бытовые модели имеют не самую высокую мощность, но для хозяйственных нужд ее вполне достаточно. Если случаются непредвиденные ситуации, например, затопление подвала талыми водами или проблемы с канализацией, можно пригласить специалистов с мощным профессиональным оборудованием. Они быстро и качественно справятся с любой задачей.

Как сделать вентилятор своими руками

  • VashTehnik.ru
  • Бытовые приборы

Вопрос тривиальный. Сначала рекомендуем определить место установки самодельного вентилятора. В технике доминируют два типа двигателей: коллекторные (исторически первые), асинхронные (изобретены Николой Теслой). Первые сильно шумят, переключение секций вызывает искру, щетки трутся, вызывая шум. Асинхронный двигатель с короткозамкнутым ротор потише, помех генерирует меньше. Пускозащитное реле найдете в холодильнике. Добавив пару фраз шутливых фраз, вернем серьезность сайту. Как сделать вентилятор своими руками, не напугать родных. Попробуем ответить.

Аспекты конструирования самодельного вентилятора

Устройство вентилятора настолько простое, пропадает смысл рассказывать, расписывать внутренности. Что учитывать при проектировании? Помните рычание циклонного пылесоса, громкость выше 70 дБ. Внутри коллекторный двигатель. Чаще лишенный возможности регулирования оборотов. Решайте, в месте установки самодельного вентилятора допустим подобный уровень звукового давления? Выбрав второе, сконцентрируемся на асинхронных двигателях, простые модели не требуют наличия пусковой обмотки. Мощность мала, вторичная ЭДС наводится полем статора.

Барабан асинхронного двигателя с короткозамкнутым ротором прорезан медными жилами по образующей, род углом к оси. Направление уклона определяет сторону вращения ротора двигателя. Медные жилы не изолируются от материала барабана, проводимость олимпийского металла превосходит окружающий материал (силумин), разность потенциалов меж соседними жилами невелика. Ток течет по меди. Меж статором, ротором отсутствует контакт, искре неоткуда взяться (проволока покрыта лаковой изоляцией).

Шумность асинхронного двигателя определяется двумя факторами:

  1. Соосность статора и ротора.
  2. Качество подшипников.

Правильно проведя настройку, обслуживание асинхронного двигателя, можно добиться практически полной бесшумности. Рекомендуем подумать, важен ли уровень звукового давления. Дело касается канального вентилятора- допускается использовать коллекторный двигатель, требования задаст местоположение секции.

Канальный вентилятор ставят внутрь секции воздуховода, монтируют, разрывая тракт. Для обслуживания секцию изымают.

Шум теряет главенствующую роль. Звуковая волна, проходя воздуховод, затухает. Особенно быстро часть спектра, имеющая несогласованные размеры относительно ширины/длины сечения тракта. Подробнее прочитаете учебники по акустическим линиям. Коллекторный двигатель можно использовать в подвале, гараже, лишенных людей. Соседи кооператива услышат, скорее поленятся обратить внимание.

Чем хорош коллекторный двигатель, что боремся за право использовать. Три недостатка асинхронного:

  • Двигатель потребляет значительный пусковой ток (3-7 номинального), негативно сказывается на требованиях к питающей сети, защитным автоматам. Проводка должна держать пусть и кратковременную, большую нагрузку. Хорошая новость: подавляющее большинство генераторов на время пуска способны выдавать бесконечный ток. Плохая – домашняя сеть смотрит на вопрос иначе, от непомерного роста мощности перегорит (раньше-позже предохранителей).
  • Асинхронный двигатель капризен, меняется частота напряжения — обороты не останутся неизменными. Снижение амплитуды питания вызовет аналогичный эффект. Не всегда хорошо. Что касается коллекторных двигателей, равнодушно смотрят на первый фактор, скачки напряжения вызывают кратковременное повышение оборотов. Оба за счет индуктивности обмоток резкие перепады фронтов напряжения гасят.
  • Коэффициент полезного действия асинхронного двигателя не отличается большим значением, однофазные модели мало уступают трехфазным. Если нужно просто подуть в жару, КПД достаточен, большего не понадобится. Прибор будет работать на вытяжку круглые сутки в помещении объемом под кубический километр — проблема станет существенной.

В начальный момент асинхронный двигатель не развивает большого крутящего момента, предпринимается ряд специальных конструктивных мер. Для вентилятора не важно. Большинство бытовых моделей оснащено асинхронными двигателями. На производстве число фаз увеличивают до трех.

Поиск двигатель для вентилятора

В одном видео Ютуб предлагалось использовать двигатель постоянного тока на 3 вольта из хозяйственного магазина. Увенчивает шнур USB, работает, вращая лопасть лазерного диска. Полезное изобретение? Если надоел лишний порт, жару поможет пережить. Проще взять процессорный кулер, запитать от системного блока. На 12 вольт идет желтый провод (красный на 5). Черная пара – земля. Из старого компьютера соберете. Гражданам РФ просто лень изобретать, выкидываем любопытное оборудование на свалку.

Асинхронные двигатели вентиляторов работают без пускового конденсатора… Особенность вентиляторных двигателей заключается: идут прямо с обмоткой. Пара советов, помогающих раздобыть двигатель:

  1. Блендер работает шумно, внутри обычно стоит коллекторный двигатель. Если прибор потерял актуальность, удалось раздобыть новый, прекрасно послужит в качестве вентилятора.
  2. Лучший канальный вентилятор – пылесос. Двигатель помещен в герметичный корпус, снабжен крыльчаткой. Установите добро в канале, хороший отток воздуха из помещения обеспечен.
  3. В холодильнике компрессор часто в рабочем состоянии, прибор предполагается выкинуть на свалку. Появляется шанс достать действующий асинхронный двигатель вместе с пускозащитным реле. Полагаем, если извлечь мотор, условия пуска изменятся, практикой предлагаем читателям заняться самостоятельно. Возможно, вращение вала будет слегка медленным… используйте редуктор. Пускозащитное реле подаст напряжение пусковой обмотке, затем отключит. Принцип действия основывается на нагреваемой током биметаллической пластине, в нужный момент обрывающей вспомогательную обмотку. Что касается защиты, работает безупречно. Схема лучше включающей асинхронный двигатель через конденсатор.
  4. Многие догадались, аэрогриль – просто шумный замечательный вентилятор, обдувающий кварцевую лампу. Поскольку элемент накала является расходным материалом, заменить проще пареной репы. Лучше снять, на случай если регулятор температуры работает неправильно. Большинство аэрогрилей руководствуются таймером, придется ежечасно взвести механизм. Проще остановить. Жевательная резинка не годится, пользуйтесь скотчем. Не стоит благодарностей. Портал ВашТехник рад помочь.
  5. В стиральных машинах двигатель способен выдать обороты. Используются коллекторные моторы, асинхронные не развивают хороший крутящий момент на старте. Внутри регулятор оборотов тиристорный, схема работает по принципу отсечки. Разберетесь, где искать: питание двигателя ведется через ключ. Ременной или прямой привод — разница нулевая.
  6. Асинхронные двигатели сделаете своими руками. Круглый магнит насадить на вал, сбоку поставить одну катушку — шансы, устройство заставить работать. Правда придется заводить вручную, вспоминаем первые самолеты, автомобили.

Сделать крыльчатку вентилятора

Вопрос, из чего сделать вентилятор, не решен, умолчи авторы о крыльчатке. Перво-наперво холодильник! Компрессор обдувается крыльчаткой. Будете доставать мотор, снимите. Пригодится. Что касается стиральной машины, барабан пустите на авиационный пропеллер. Пластиковый бак годится сделать корпус. Места сгиба грейте строительным феном.

Осмотрите блендер, снабдите ненужным лазерным диском, получившим форму крыльчатки. Сделать вентилятор самостоятельно можно, воспользовавшись подручными материалами. Не требуется большая мощность, нет смысла слишком усердствовать, оттачивая детали. Верим, читатели знают, как сделать вентилятор своими руками.

Вечный вентилятор из процессорного кулера

Решили порадовать читателей, рассказав, как сделать вентилятор. Обзор далеко не первый, пришлось покопаться, отыскивая стоящее. Смотрится шикарно идея создания вечного вентилятора, крутящегося вечно. Пользователь mail.ru выложил конструкцию, смотрящуюся привлекательно. Давайте посмотрим вблизи, обдумывая попутно, как сделать вентилятор, работающий вечно.

Знаете, конечно, системные блоки работают тихо (современные модели). Малейший шум означает: у кулера сбилась ось, либо пора смазать постаревший вентилятор. Работают часами, дни складываются неделями, системный блок послужит годы. Стало возможным, благодаря продуманной технологии. Задумайтесь, от величины силы трения зависит шум. Энергия механическая становится тепловой, акустической за счет наличия шероховатостей. Процессорные кулеры легко вращаются, стоит подуть.

Кулер процессорный

Автор видео – извиняемся за отсутствие имени, оправдываем: ролик на английском – предлагает собрать из аксессуара вечный вентилятор. Точность подгонки деталей велика, лопасть крутится легко. Затраты сокращаются до минимума. Автор видео, выложенного каналом deirones, заметил: вентилятор процессора питается постоянным током. Полез внутрь, обнаружил четыре катушки, равноотстоящие по окружности, осями направленными к центру приборчика.

Внутри не наблюдается коммутаторов, означает парадоксальный факт: поле катушек постоянное.

Если асинхронный двигатель типичного вентилятора питается переменным напряжением 220 вольт, создающим вращающееся магнитное поле, в нашем случае картина постоянная. Могли бы сказать: внутри ротор приводит в движение коммутатор, создающий нужное распределение. Неправда, подтверждается дальнейшим ходом мысли автора, результатом опыта. Западный новатор решает заменить катушку постоянным магнитом. Действительно, нет переменного поля — зачем электрический ток?

Демонстративно автор отрезает провод питания, располагает магниты неодима (жесткого диска) периметром рамки. Каждый на продолжении оси катушки. Работа закончена, лопасти бодро начали вращаться. Полагаем, просто использован принцип, замалчиваемый ортодоксальной литературой. Коммерческая тайна патентообладателя.

Процессорный кулер

Начальное движение лопасти получают за счет случайных флуктуаций воздуха. Напоминает магнетрон, раскачка колебаний вызвана естественным хаотичным движением элементарных частиц. Возник вопрос, что задает направление вращения. Конструкция абсолютно симметрична. Решили разобраться, высказываем наши наблюдения:

  1. В обзоре одного кулера процессора (кулера, не вентилятора) видно: при остановке лопасть, затронутая рукой, начинает двигаться легкими рывками. Портал рассматривал помпы стиральных машин. Имеет место аналогичный эффект. Конструкция схожа: периметром стоят катушки (переменного поля), внутри намагниченный ротор. Благодаря действию постоянного магнита лопасть вращается рывками. Указывает, что ось процессорного вентилятора имеет некий момент. Степень намагниченности мала, но хватает работе устройства. Не исключено, эффект проявляется без специального воздействия. В телевизорах есть петля размагничивания маски экрана. Касается электронно-лучевых моделей. Литературой сказано: причиной намагничивания могут стать близко расположенный динамик акустической системы, естественное поле Земли. Катушки постоянного тока стоят периметром. Ось кулера снабжена магнитным моментом, можно ухватиться: рукоятка Архимеда, обещавшего перевернуть Землю, получив рычаг.

    Процессорный кулер

  2. Поразило одно: кулер (вентилятор процессора) вращается однонаправленно. В обычном асинхронном двигателе слегка наклоняют проволоку беличьей клетки в нужную сторону, помпе стиральной машины нет разницы, куда вращаться. Подумали, нашли, эти катушки, вместе с осью удерживаются стойкой определенной формы. Образуют очертания вихря. Расположение, толщина, форма держателей просчитаны, чтобы сделать затруднительным вращение в ином направлении. Остается понять, как происходит движение. Напоминаем: магнитное поле постоянное, очевидно из опыта, заменив неодимом катушки картину получили прежнюю. Удивляет, отсутствует разница северным, южным полюсом размещать магниты. Вентилятор бодро вращается, учуяв правильную расстановку.

    Работа кулера

  3. Полагаем, дело в инерции. Лопасти за счет широкой ветровой поверхности начинают движение, стронутые с места случайными воздушными турбулентностями (напоминаем магнетрон, зарождающий первые колебания из хаотичного движения электронов). Дальше вал увлекается нужным направлением, движется, влекомый набранной скоростью, проскакивая неблагоприятные участки, пользуясь положительными. В помпе стиральной машины поле меняется катушкой, асинхронный двигатель — картина аналогичная. Получается вечный вентилятор, каждый способен собрать своими руками, заимев четыре кусочка неодимового магнита.

Согласитесь, удобнее, нежели мутить порты USB, постоянно тратить батарейки. Работает вечный вентилятор из произвольного положения, лишен проводов. Полагаем, определяющую роль играет сила магнитов. Перестает работать простое правило: больше — лучше. Проскальзывает золотая середина. Когда лопасти будут крутиться от случайного потока воздуха, преодолевая поле кусочков неодима. Слабые магниты наверняка бессильны удержать устойчивое вращение. Сила поля должна быть в точности, как создаваемая катушками под действием напряжения +5 или +12 вольт.

Правильно создать вечный вентилятор

Обсудили, как сделать вентилятор, измерим направление, силу магнитного поля катушек. Пользуются специальными приборами. Магнитометр, тесламетр, сформирован преобразователем магнитной индукции, измерительным модулем. При взаимодействии полей получается результирующая картина, называется сцеплением. Преобразователь генерирует ЭДС. Размер определяет измеряемая сила магнитного поля. Как два пальца! Стоит 10000 рублей.

Магниты будут располагаться на значительном удалении от оси. Катушки стоят намного ближе. Нужно знать изменение картины с расстоянием. Согласно закону Кулона, сила падает обратно пропорционально квадрату удаленности, справедливо для одиночных зарядов произвольного знака. Магнитные полюсы отдельные в природе пока не найдены (создать не представляется возможным), в закон вносится куб расстояния . Допустим, удаление до катушки от оси составляет 1 см, периметром по диагонали получается 10. Значит, неодим должен быть сильнее в 10 х 10 х 10 = 1000 раз, маленькой катушки.

Никто не обязывает располагать неодимовые магниты периметром вентилятора на диагоналях. Полюсы лежат крест-накрест. Регулируют силу воздействия в широких пределах. Располагая неодимовые магниты по центру сторон рамки вентилятора, значительно увеличиваем напряженность поля. Проведем расчет. Допустим, гипотенуза треугольника со стороной 10 см является диагональю. Расстояние до центра квадрата будет равно 10 / √2 = 7 см. Видите, отношение с 1000 падает, достигая 7 х 7 х 7 = 343. Весомо, отчаявшимся найти сильные магниты неодима для создания вечного вентилятора.

Силу измерим! Годится компас (имеются пользовательские конструкции, собираемые своими руками, например, http://polyus.clan.su/index/indikatory_magnitnogo_polja_svoimi_rukami/0-52). Следует подключить к питанию одну катушку. Затем найдите положение, поднесенная стрелка отклонится примерно на 45 градусов (не нравится – берите любой другой азимут). После начинайте эксперимент с неодимом. Располагайте кусок на разных удалениях, добиваясь совпадения отклонения стрелки с получающимся при использовании катушки вентилятора процессора. Наверняка расстояние не равно диагонали, половине стороны, придется неодим ломать, резать.

Пропиливая одну кромку по длине, аккуратно ломаем части о гвоздь, получая нужную напряженность поля для создания вечного вентилятора. Полагаем, индукция распределяется пропорционально объему. Сегодня рассказали доходчиво, как сделать вентилятор своими руками!

Источник питания

Желающий изготовить вентилятор своими руками, видит 3 проблемы: достать двигатель, питание, сделать пропеллер. Детали должны взаимно стыковаться. Три проблемы решены, начинаете своими руками делать вентилятор. Сегодня дома обилие импульсных блоков питания. Задумайтесь, началось в 90-е. Игровые приставки, мобильные телефоны, прочая аппаратура. Техника ломается, импульсные блоки питания остаются. Вольтаж иногда нестандартный, большинство моторчиков работает, питаясь любым напряжением. Просто обороты будут меняться сообразно вольтажу. Дома завалялась сломанная бытовая техника — немедленно сделайте вентилятор самостоятельно.

Блоки питания самодельного вентилятора

Постоянно люди пытаются сделать своими руками особенный вентилятор. Один вопрос чаще выходит за рамки обсуждения: источник питания. Само устройство вентилятора настолько очевидно, пропал смысл останавливаться подробнее. Итак, понятно, батареек сегодня немыслимое количество. Смогут ли работать долго. Ответ – нет. В крайнем случае возьмите «крону», в советское время считали надежным источником энергии. Блок питания плох, мощность постепенно станет падать, обороты уменьшаться, человека раздражать. Важна стабильность без дополнительных усилий. Отсутствует маленький аккумулятор 12 вольт — приготовьтесь: начнем искать, как сделать источник энергии самодельного вентилятора.

Первое, приходит в голову: курочить компьютер. Известно, миниатюрные устройства питаются портом USB. Гаджеты подзаряжаются. Порт USB является источником неиссякаемой энергии. Напряжение невелико, понадобится низковольтный мотор постоянного тока. Полагаем, можно найти дома, купить в хозяйственном магазине. Сколько составит мощность порта: по старым стандартам 2–3 Вт. Другое дело, найти устройство-хост с обновленной версией интерфейса (2014 год признал редкостью). Разработчики обещали выдать 50 Вт (даже больше, верится с трудом). Правда проводов станет больше, номинальных напряжений прибавится. Напоминаем, согласно традиции, питание подается на красный (+), черный (-) провода. Белый, зеленый – сигнальные.

Понятно, большой мощности ожидать сложно, – даже если порт поддержит, моторчик не потянет. Рекомендуется присмотреть вольтаж побольше. Двигатель должен питаться бόльшим напряжением. Например, рекомендуют использовать кулер процессора. Напряжение питания меньше положенных 12-ти вольт, просто понизится скорость вращения. Превышать остерегайтесь – возможно сгорит мотор.

Ищем энергию, вопрос проще решается, нежели для 3 вольт:

  1. 12 вольт найдете в персональном компьютере, запитать кулер используют вольтаж. Уделите внимание направлению проводов. На каждом стандартном разъеме 12 вольт выявляются. Крайний желтый провод (доводилось видеть прямо противоположные схемы), два черных посередине – земля. Проверяйте тестером, раскладка типична.
  2. 12 вольт постоянного тока дают адаптеры подзарядки переносных раций. Распространены приборы, потребляющие 9 вольт. Сгодится процессорному кулеру. Сегодня популярны элементы Пельтье, снабжаются большим радиатором, вентилятор часто становится бесполезным. Умники довели процессор до температуры минус 10 градусов Цельсия, – хватит надежной работе. Кулер приспособьте под самодельный вентилятор. Любой хорош наличием 4 отверстий. Редко удается привинтить к сокету процессора, зато можно продеть проволочный каркас, выступающий подставкой. 4 отверстия по четырем углам – придумайте, как лучше сделать подставку.
  3. Любой желающий сделает блок питания самостоятельно… Прямо сейчас займемся, системный блок курочить повремените. Микросхемы, радиоэлементы широко продают торговые точки, рынки.

Блок питания 12 вольт для самодельного вентилятора своими руками

Предлагаем не собирать импульсный блок питания, сделать своими руками обычный. Напомним, первые отличаются трансформаторами малых размеров. Стало быть, блок питания будет сравнительно больших габаритов. Будет состоять из следующих частей:

  • Понижающий трансформатор. Заранее не назовем число витков, неизвестен вольтаж, выпрямив который диодами, получим 12 вольт. Разумеется, можно поэкспериментировать, как видео Ютуб про самодельные радиоприемники, захватив читателя, поищем готовое решение.
  • Мост двухполупериодный, добавив одному диоду три, повышаем КПД. Радиодетали не отличаются большой стоимостью.
  • Костяк блока питания готов, чтобы самодельный вентилятор служил долго, выпрямим пульсации сети. После моста включим фильтр нижних частот, схему перерисуем из интернета.

На выходе постоянное напряжение амплитудой 12 вольт. Старайтесь не перепутать клеммы. Где «плюс», где выходит «минус» можно понять, изучив схему. Ниже приводим рисунок моста, смотрите, читайте пояснения. В радиоэлектронике направление тока указывается противоположное истинному. Заряды текут, согласно поверьям, в направлении от плюса к минусу (навстречу электронам). Читая схему, увидите: у диода, транзистора эмиттер, помеченный стрелкой, смотрит неправильно. В направлении движения положительных зарядов. Каждый имеет пометки, на схеме обозначается большущей стрелкой-треугольником. Следовательно, всегда узнаем, «плюс», руководствуясь графическими обозначениями, приведенными чертежом.

Рисунок показывает: плюс будет справа, передается согласно стрелке диода на нижнюю клемму выхода. Минус уйдет наверх. При переменном напряжении (грубо говоря) плюс, минус будут чередоваться слева-справа, станет понятным название выпрямителя – двухполупериодный. Работает на положительной части напряжения и отрицательной. Диоды берите силовые, низкочастотные. Солидных размеров, рассеиваемая мощность сравнительно велика. Посчитать можно, используя незамысловатую формулу, взятую из учебного курса физики. Сопротивление открытого p-n-перехода (листаем справочник) умножаем на ток, потребляемый двигателем, берем запас минимум в 2 раза. Корпус моторчика содержит надпись, указывающую мощность, можно поделить на напряжение 12 вольт, попросту умножить на 2 – 3, взять диод с эквивалентной мощностью рассеивания (см. справочник).

Теперь рассчитаем трансформатор… Зашли сюда http://radiolodka.ru/programmy/radiolyubitelskie/kalkulyatory-radiolyubitelya/, выбрали программу Trans50, будем осваивать. Заметьте, среди ПО имеется, позволяющая посчитать параметры фильтра. Не жалеете, что собрались своими руками сделать вентилятор? Предлагают выбрать одну из 5-ти обмоток. Везде участвует сталь. Можете обойтись, потери будут велики. Сталь образует магнитопровод, энергия достается вторичной обмотке. Лучше найти старый ржавый трансформатор. Время плохое, в голодные 90-е свалки усеяны пластинами сданных в лом обмоток. Проблем с намоткой трансформаторов не возникало.

Пришло время понять, какое напряжение потребуется корректной работе схемы. Поможет термин, позаимствованный из электроники, действующее напряжение переменного тока. Вольтаж, на активном сопротивлении создающий тепловой эффект равный постоянному напряжению действующей амплитуды. Для получения необходимой величины напряжения на вторичной обмотке, нужно 12 вольт поделить на 0,707 (единица, деленная на корень квадратный 2). Авторы получили 17 вольт. Инженерный расчет грешит погрешностью 30%, возьмем небольшой запас (часть амплитуды до 1 вольт потеряется на диодах).

Что касается тока вторичной обмотки (требуется расчету), наберите в поисковике нечто вроде «мощность кулера». Проделаем вместе с читателями. Умные статьи пишут: ток потребления кулера указан на корпусе. Будет нужный параметр, подставим в калькулятор. Напряжение вторичной обмотки автор взяли 19 вольт. Падение напряжения на p-n-переходах мощных кремниевых диодов составляет 0,5 – 0,7 вольт. Следовательно, нужен соответственный запас. Умные головы поискали, сделали вывод, кулер процессора не потребляет свыше 5 Вт, следовательно, ток равен 5 поделить на 12 = 0,417 А. Подставляем цифры скаченному калькулятору, для ленточного сердечника получаем параметры конструирования трансформатора:

  1. Сечения магнитопровода под намотку 25 х 32 мм.
  2. Окно в магнитопроводе 25 х 40 мм.
  3. Магнитопровод отделывается каркасом под намотку проволоки толщиной 1 мм и сечением 27 х 34 мм.
  4. Проволока наматывается вдоль большей стороны окна, по 1 мм с краев остается запас, итого 38 мм.

Первичная обмотка сформирована 1032 витками диаметром 0,43 мм. Ориентировочная длина проволоки составляет 142 метра, тотальное сопротивление 17,15 Ом. Вторичная обмотка состоит из 105 витков медной жилы с лаковой изоляцией диаметром 0,6 мм (длина 16,5 метра, сопротивление 1 Ом). Теперь читатели понимают: вопрос, из чего сделать вентилятор, начинают решать сердечником…

Насколько результативны предложенные технические решения? Опахала известны Древнему Египту. Свидетельствует клип Майкла Джексона, рекомендующий «вспомнить время» (Remember the time). Сюжет едва ли изготовили без консультации археологов, ученых-историков. Хотим доложить, в Мексике большинство дам пользуется веерами. Испанцы знают, как бороться с жарой, страна лежит на экваторе. Задумайтесь…

Выбираем водяной насос для дачи, дома и сада: обзор всех видов насосных конструкций

Водяной насос – основной элемент систем водоснабжения, орошения, полива. От его функциональности зависит работа всей системы в целом. Если устройство изначально подобрано неправильно, не хватает мощности или конструкция прибора не подходит для выполняемых функций, то сбои в работе неизбежны. В этом случае придется либо докупать дополнительные устройства, компенсирующие недостаток, либо менять саму модель. Чтобы правильно выбрать водяной насос для воды для дома, дачи или сада, необходимо учитывать конструкционные особенности, принцип работы, назначение и технические характеристики водоподъемного оборудования.

Общие принципы устройства насосов

Каждый тип насоса имеет собственные конструкционные особенности, но общий принцип работы у всех перекачивающих устройств один. При включении электродвигателя внутри корпуса создается вакуум. Благодаря низкому давлению вода всасывается в вакуумную камеру, перемещается к выходному патрубку и с силой выталкивается через него в шланг или трубопровод. Силой «выдавливания» воды определяется давление в системе. Оно должно быть достаточно высоким для преодоления гидравлического сопротивления.

Все насосы работают по принципу втягивания воды через входное отверстие и выброс через выходной патрубок, различаются они только способом создания вакуума

Конструкции насосов могут существенно различаться в зависимости от того, каким способом создается вакуум в приборе, по этому признаку насосы делят на:

  • центробежные;
  • вихревые;
  • вибрационные (второе название – электромагнитные).

В зависимости от расположения насоса относительно резервуара с водой различают поверхностные и погружные модели. По конструкции и функциональности устройства делят на колодезные, скважинные, дренажные, мотопомпы. Более подробное пояснение дано в видеоролике ниже:

Центробежный насос – универсальное оборудование

Приборы этого типа используются практически во всех сферах – как производственных, так и бытовых. Принцип работы основан на создании внутри корпуса центробежной силы, благодаря которой происходит движение воды, создается напор. Лопасти и колеса рабочей части, вращаясь, затягивают жидкость, прижимают к стенке, после чего выталкивают в выходное отверстие. В зависимости от конструкции и назначения приборы разделяют на множество групп. Они могут быть поверхностными и погружными, консольными, горизонтальными, вертикальными, моноблочными, одно- и многоступенчатыми.

Все элементы конструкции изготовлены из высокопрочных материалов, детали практически не изнашиваются. Предполагается, что насосы будут работать беспрерывно. Поэтому они разработаны так, чтобы обслуживание было несложным и быстрым. Устройства могут работать при высоких температурах и в химически агрессивных средах, характеристики зависят от особенностей конкретной модели. Некоторые из них выдерживают до 350 градусов.

К преимуществам центробежных насосов относят надежность, долговечность, безотказность, приемлемую цену, возможность оснащения необходимой автоматикой, высокий КПД. Однако, как и любые другие устройства, насосы этого типа имеют собственные недостатки. Так, для запуска прибора корпус нужно заполнять водой, поскольку из-за малой центробежной силы вода не всасывается в патрубок. При попадании воздуха во входной патрубок насос может остановиться. Кроме того, если сопротивление в электросети меняется, это может сказаться на стабильности работы устройства.

Поверхностные центробежные насосы мобильны, легко демонтируются и транспортируются, но для стационарной установки подходят плохо

Широкое распространение получили центробежные консольные насосы. Их используют для перекачивания чистой и грязной воды, содержащей примеси и небольшие твердые частицы. Для систем водоснабжения домов и дач применяют одноступенчатые горизонтальные консольные насосы. Многоступенчатые горизонтальные насосы представляют собой конструкцию, работающую как несколько одинаковых, последовательно подсоединенных, одноступенчатых устройств. Благодаря этому они способны обеспечить мощный напор в системе.

Центробежные водяные насосы приобретают для дома, дачи, систем полива и орошения. Их устанавливают в системах водоснабжения, работающих от скважин. Используют погружные и полупогружные модели. Первые проще в монтаже, а вторые в обслуживании. Для установки полупогружной модели в скважину нужны особые условия. Это трудоемкая работа, поэтому, несмотря на очевидные достоинства, владельцы частных домов чаще останавливают выбор на погружных моделях. Их можно монтировать в скважинах, где при установке обсадной трубы были отклонения от вертикали. К недостаткам конструкций следует отнести высокую чувствительность к песку и загрязнениям.

Предлагаем обзор центробежных моноблочных водяных насосов, отлично подходящих для сада:

Особенности работы конструкций вихревого типа

Устройство работает за счет вихревого колеса, представляющего собой металлический диск с лопастями, создающими центробежную силу. В силу конструкционных особенностей вода закручивается в спирали, по виду напоминающие вихрь. Главное достоинство насосов вихревого типа – мощный напор. При равных с центробежным насосом габаритах, весе, размерах колеса и количестве оборотов вихревой обеспечивает более сильный напор. Поэтому размеры корпуса вихревой модели могут быть существенно меньше, чем центробежной.

Благодаря высокому давлению, создаваемому вихревыми насосами, их с успехом применяют для полива садов, огородов. Они отлично подходят для установки в системах водоснабжения дач и частных домов, если возникает необходимость в усилении давления в сети. В отличие от центробежных моделей, вихревые нормально переносят попадание в трубопровод крупных пузырьков воздуха. Компактные размеры расширяют сферу применения насосов этого типа. Из недостатков – чувствительность к взвешенным частицам в воде. Если их много, насос будет работать с перебоями и быстро придет в негодность.

Благодаря компактным размерам и высокой мощности вихревые насосы хорошо подходят для установки в глубокие скважины малого диаметра

Вибрационные насосы для дома и сада

Для дома, дачи и сада можно выбрать электрический водяной насос вибрационного типа. Принцип его работы основан на воздействии электромагнитного поля, создаваемого катушкой, которая втягивает металлический сердечник с гибкой диафрагмой. Изгибаясь, резиновая диафрагма создает низкое давление, благодаря которому вода засасывается в гидравлическую камеру. Когда диафрагма возвращается на место, давление повышается и срабатывает клапан, перекрывающий входное отверстие, поэтому вода выталкивается через выходной патрубок. Постоянное движение диафрагмы обеспечивает бесперебойное перекачивание воды.

Насосы вибрационного типа используют для организации полива и орошения растений. Их устанавливают в системы автономного водоснабжения. Огромным преимуществом этой конструкции является способность перекачивать загрязненную воду, что позволяет применять их при откачивании колодцев и скважин для профилактической чистки. При работе с грязной водой производительность вибрационных насосов заметно падает, однако они вполне справляются с чисткой дна гидротехнических сооружений. Еще один плюс конструкции – относительно невысокая стоимость и надежность. Долговечность устройств обеспечена конструкцией, в которой нет движущихся, трущихся деталей.

Если диаметр скважины относительно велик, то можно установить вибрационный насос, предварительно надев на него резиновые кольца для «глушения» вибрации

Недостатков у электрических вибрационных насосов не меньше, чем достоинств. В работе приборов нередко случаются сбои в случае перепадов напряжения в электросети. Если владелец дома решит установить вибрационный насос, дополнительно придется приобрести стабилизатор напряжения. Такие насосы с успехом используют для перекачивания воды из колодцев, но их нежелательно устанавливать в скважины, особенно малого диаметра, несмотря на удобство монтажа. Постоянная вибрация негативно сказывается на конструкции обсадной колонны, и рано или поздно насос либо сломается сам, либо разрушит эксплуатационную трубу.

Насос «Ручеек» нежелательно монтировать в узкие обсадные трубы. Это может закончиться незапланированным ремонтом насоса или даже бурением новой скважины

Применение поверхностных и погружных насосов

Все водоподъемное оборудование можно разделить на поверхностное и погружное. Насосы первого типа устанавливают возле гидротехнических сооружений или водоемов, из которых ведется забор воды. Вторые опускают в воду. Конструкции различаются по производительности, типу и расположению входных патрубков, допустимых условиям монтажа. Поверхностные модели обычно дешевле и способны работать, если высота водяного слоя ниже 80 см. Погружные насосы должны работать на глубине не менее 1 м под поверхностью воды.

Поверхностные модели – хороший выбор для полива

Поверхностный водяной насос для сада или огорода – идеальный вариант, если нужно организовать полив из естественного водоема или объемного резервуара. При необходимости его легко демонтировать и перенести в другое место, убрать на хранение. Он хорошо подходит для дач. Такой насос можно установить для забора воды из колодца или неглубокой скважины (до 9 м), абиссинского колодца. В этом случае владельцу не придется подбирать устройство по диаметру, т.к. в скважину опускается только шланг, а сам насос устанавливают рядом с эксплуатационной трубой.

Насосные станции относятся к поверхностному водоподъемному оборудованию. Они представляют собой многофункциональные системы, объединяющие насос и гидроаккумулятор

Единственный нюанс – для монтажа поверхностной модели нужно подготовить помещение, где устройство будет защищено от влаги, а шум от его работы не будет никому мешать. Устанавливают прибор либо на землю, либо на специальную плавающую платформу, если нужно забирать воду из открытого источника. При монтаже в негерметично закрытых приямках дно не заливают бетоном, а засыпают гравием. Сыпучие материалы впитывают излишки влаги, которые могут появиться при просачивании воды через швы бетонных колец или кирпичной кладки.

При расчете нужной мощности нужно помнить, что соотношение длины по вертикали и горизонтали равно 1:4, т.е. 1 м вертикального трубопровода считается как 4 м горизонтального. Для организации водоснабжения лучше использовать пластиковые трубы, а не резиновые шланги. Во время перекачивания жидкости по гибким шлангам они могут сжиматься и изгибаться от перепадов давления. Вода не будет нормально проходить через узкое отверстие, что приведет к перебоям с подачей.

С помощью поверхностного оборудования легко организовать полив растений из пруда. Для этого при выборе модели необходимо учесть, что вода будет поступать с частичками грязи и песка

Погружное оборудование для водоснабжения дома

Лучший насос для воды для дома или дачи, где проживают подолгу, — погружной. Он хорошо подходит, если планируется монтаж системы водоснабжения от глубокой скважины (свыше 9-10 м). Обычная бытовая модель поднимает воду из скважины глубиной до 40 м, а для более глубоких сооружений можно найти устройство помощнее. С подбором насосов для скважин до 80 м редко возникают проблем, т.к. ассортимент обширен. Все погружные модели снабжены автоматической защитой от «сухого хода».

Устанавливать погружной насос можно, если он не будет касаться дна, а высота водного слоя над ним будет не менее 1 м. Это необходимо по нескольким причинам. Во-первых, чтобы двигатель нормально охлаждался, должно быть достаточное количество воды. Во-вторых, уровень воды в скважине или колодце не стабилен. Он может изменяться в зависимости от сезона. Важно, чтобы при этом насос не оказался слишком близко к зеркалу воды, иначе могут возникнуть сложности с водоснабжением. Насос не должен достигать дна на 2-6 м, чтобы грязь и песчинки со дна не попадали во входной патрубок.

Отличительная особенность дренажных насосов – способность перекачивать как чистую воду, так и грязную с твердыми включениями. На входном патрубке такого насоса предусмотрена сетка. Устройства можно подключать к системам водоснабжения

Краткий видеоурок по выбору насоса

Выбирая электрический водяной насос для дома, дачи или сада, в первую очередь учитывайте его целевое назначение. Идеального оборудования «для всего» не существует. Обдумайте, какие главные задачи будет выполнять устройство, будет ли оно работать только на перекачивание чистой воды или есть вероятность, что ему придется поднимать воду с песком и грязью.

При подборе конкретной модели обязательно учитывайте самые важные технические параметры: мощность, производительность, КПД, максимальный напор. Если при расчетах возникают сомнения в их правильности, посоветуйтесь со специалистом. Что касается торговых марок бытовых водяных насосов, то хорошо себя зарекомендовали бренды Wilo, DAB, «Джилекс», «Беламос». Лидером рынка считается марка Grundfos.

admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *